Proxima Centauri - Characteristics

Characteristics

Proxima Centauri is classified as a red dwarf star because it belongs to the main sequence on the Hertzsprung–Russell diagram and is of spectral class M5.5. It is further classified as a "late M-dwarf star", meaning that at M5.5, it falls to the low-mass extreme of M-type stars. This star's absolute visual magnitude, or its visual magnitude as viewed from a distance of 10 parsecs, is 15.5. Its total luminosity over all wavelengths is 0.17% that of the Sun, although when observed in the wavelengths of visible light the eye is most sensitive to, it is only 0.0056% as luminous as the Sun. More than 85% of its radiated power is at infrared wavelengths.

The two bright stars are (left) Alpha Centauri and (right) Beta Centauri. The faint red star in the center of the red circle is Proxima Centauri. Taken with Canon 85mm f/1.8 lens with 11 frames stacked, each frame exposed 30 seconds.

In 2002, optical interferometry with the Very Large Telescope (VLTI) found that the angular diameter of Proxima Centauri was 1.02 ± 0.08 milliarcsec. Because its distance is known, the actual diameter of Proxima Centauri can be calculated to be about 1/7 that of the Sun, or 1.5 times that of Jupiter. The star's estimated mass is only 12.3% of a solar mass, or 129 Jupiter masses. The mean density of a main-sequence star increases with decreasing mass, and Proxima Centauri is no exception: it has a mean density of 56,800 kg/m3 (56.8 g/cm3), compared with the Sun's mean density of 1,409 kg/m3 (1.409 g/cm3).

Because of its low mass, the interior of the star is completely convective, causing energy to be transferred to the exterior by the physical movement of plasma rather than through radiative processes. This convection means that the helium ash left over from the thermonuclear fusion of hydrogen does not accumulate at the core, but is instead circulated throughout the star. Unlike the Sun, which will only burn through about 10% of its total hydrogen supply before leaving the main sequence, Proxima Centauri will consume nearly all of its fuel before the fusion of hydrogen comes to an end.

Convection is associated with the generation and persistence of a magnetic field. The magnetic energy from this field is released at the surface through stellar flares that briefly increase the overall luminosity of the star. These flares can grow as large as the star and reach temperatures measured as high as 27 million K—hot enough to radiate X-rays. Indeed, the quiescent X-ray luminosity of this star, approximately (4–16) × 1026 erg/s ((4–16) × 1019 W), is roughly equal to that of the much larger Sun. The peak X-ray luminosity of the largest flares can reach 1028 erg/s (1021 W.)

The chromosphere of this star is active, and its spectrum displays a strong emission line of singly ionized magnesium at a wavelength of 280 nm. About 88% of the surface of Proxima Centauri may be active, a percentage that is much higher than that of the Sun even at the peak of the solar cycle. Even during quiescent periods with few or no flares, this activity increases the corona temperature of Proxima Centauri to 3.5 million K, compared to the 2 million K of the Sun's corona. However, the overall activity level of this star is considered low compared to other M-class dwarfs, which is consistent with the star's estimated age of 4.85 × 109 years, since the activity level of a red dwarf is expected to steadily wane over billions of years as its stellar rotation rate decreases. The activity level also appears to vary with a period of roughly 442 days, which is shorter than the solar cycle of 11 years.

Proxima Centauri has a relatively weak stellar wind, resulting in no more than 20% of the Sun's mass loss rate from the solar wind. Because the star is much smaller than the Sun, however, the mass loss per unit surface area from Proxima Centauri may be eight times that from the solar surface.

A red dwarf with the mass of Proxima Centauri will remain on the main sequence for about four trillion years. As the proportion of helium increases because of hydrogen fusion, the star will become smaller and hotter, gradually transforming from red to blue. Near the end of this period it will become significantly more luminous, reaching 2.5% of the Sun's luminosity and warming up any orbiting bodies for a period of several billion years. Once the hydrogen fuel is exhausted, Proxima Centauri will then evolve into a white dwarf (without passing through the red giant phase) and steadily lose any remaining heat energy.

Read more about this topic:  Proxima Centauri