Protecting Groups - Orthogonal Protection

Orthogonal protection is a strategy allowing the deprotection of multiple protective groups one at a time each with a dedicated set of reaction conditions without affecting the other. In the example shown, the protected amino acid tyrosine, the benzyl ester can be removed by hydrogenolysis, the Fluorenylmethylenoxy group (Fmoc) by bases (such as piperidine), and the phenolic tert-butyl ether cleaved with acids (e.g. with trifluoroacetic acid).

A common example for this application, the Fmoc-peptide synthesis, in which peptides are grown in solution and on solid phase is very important. The protecting groups in solid-phase synthesis with regard to the reaction conditions such as reaction time, temperature and reagents can be standardized so that they are carried out by a machine, while yields of well over 99% can be achieved. Otherwise, the separation of the resulting mixture of reaction products is virtually impossible.

The technique was introduced in the field of peptide synthesis by Robert Bruce Merrifield in 1977. As a proof of concept orthogonal deprotection is demonstrated in a photochemical transesterification by trimethylsilyldiazomethane utilizing the kinetic isotope effect:

Due to this effect the quantum yield for deprotection of the right-side ester group is reduced and it stays intact. Significantly by placing the deuterium atoms next to the left-side ester group or by changing the wavelength to 254 nm the other monoarene is obtained.

Read more about this topic:  Protecting Groups

Famous quotes containing the word protection:

    As Jerome expanded, its chances for the title, “the toughest little town in the West,” increased and when it was incorporated in 1899 the citizens were able to support the claim by pointing to the number of thick stone shutters on the fronts of all saloons, gambling halls, and other places of business for protection against gunfire.
    —Administration in the State of Ariz, U.S. public relief program (1935-1943)