Propionic Acidemia - Pathophysiology

Pathophysiology

In healthy individuals, the enzyme propionyl CoA carboxylase converts propionyl CoA to methylmalonyl CoA. This is one step in the process of converting certain amino acids and fats into sugar for energy. Individuals with PA cannot perform this conversion because the enzyme propionyl CoA carboxylase is nonfunctional. The essential amino acids isoleucine, valine, threonine, and methionine and odd-chain fatty acids are simply converted to propionyl CoA, before the process stops, leading to a buildup of propionyl CoA. Instead of being converted to methylmalonyl CoA, propionyl CoA is then converted into propionic acid, which builds up in the bloodstream. This in turn causes a build-up of dangerous acids and toxins, which can cause damage to the organs.

In many cases, PA can damage the brain, heart, and liver, cause seizures, and delays to normal development like walking and talking. During times of illness the affected person may need to be hospitalized to prevent breakdown of proteins within the body. Each meal presents a challenge to those with PA. If not constantly monitored, the effects would be devastating. Dietary needs must be closely managed by a metabolic geneticist or metabolic dietician.

Mutations in both copies of the PCCA or PCCB genes cause propionic acidemia. These genes are responsible for the formation of the enzyme propionyl-CoA carboxylase (EC 6.4.1.3), referred to as PCC.

PCC is required for the normal breakdown of the essential amino acids valine, isoleucine, threonine, and methionine, as well as certain odd-chained fatty-acids. Mutations in the PCCA or PCCB genes disrupt the function of the enzyme, preventing these acids from being metabolized. As a result, propionyl-CoA, propionic acid, ketones and other toxic compounds accumulate in the blood, causing the signs and symptoms of propionic acidemia.

Read more about this topic:  Propionic Acidemia