Property B - Values of m(n)

Values of m(n)

It is known that m(1) = 1, m(2) = 3, and m(3) = 7 (as can by seen by the following examples); the value of m(4) is not known, although an upper bound of 23 (Seymour, Toft) and a lower bound of 21 (Manning) have been proven. At the time of this writing (August 2004), there is no OEIS entry for the sequence m(n) yet, due to the lack of terms known.

m(1)
For n = 1, set X = {1}, and C = {{1}}. Then C does not have Property B.
m(2)
For n = 2, set X = {1, 2, 3} and C = {{1, 2}, {1, 3}, {2, 3}}. Then C does not have Property B, so m(2) <= 3. However, C' = {{1, 2}, {1, 3}} does (set Y = {1} and Z = {2, 3}), so m(2) >= 3.
m(3)
For n = 3, set X = {1, 2, 3, 4, 5, 6, 7}, and C = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1}, {6, 7, 2}, {7, 1, 3}} (the Steiner triple system S7); C does not have Property B (so m(3) <= 7), but if any element of C is omitted, then that element can be taken as Y, and the set of remaining elements C' will have Property B (so for this particular case, m(3) >= 7). One may check all other collections of 6 3-sets to see that all have Property B.
m(4)
Seymour (1974) constructed a hypergraph on 11 vertices with 23 edges without Property B, which shows that m(4) <= 23. Manning (1995) proved that m(4) >= 20.

Read more about this topic:  Property B

Famous quotes containing the word values:

    We must be physicists in order ... to be creative since so far codes of values and ideals have been constructed in ignorance of physics or even in contradiction to physics.
    Friedrich Nietzsche (1844–1900)