Proofs Involving The Addition of Natural Numbers - Proof of Associativity

Proof of Associativity

We prove associativity by first fixing natural numbers a and b and applying induction on the natural number c.

For the base case c = 0,

Each equation follows by definition ; the first with a + b, the second with b.

Now, for the induction. We assume the induction hypothesis, namely we assume that for some natural number c,

Then it follows,

(a + b) + S(c)
= S((a + b) + c)
= S(a + (b + c))
= a + S(b + c)
= a + (b + S(c))

In other words, the induction hypothesis holds for S(c). Therefore, the induction on c is complete.

Read more about this topic:  Proofs Involving The Addition Of Natural Numbers

Famous quotes containing the words proof of and/or proof:

    There is no better proof of a man’s being truly good than his desiring to be constantly under the observation of good men.
    François, Duc De La Rochefoucauld (1613–1680)

    War is a beastly business, it is true, but one proof we are human is our ability to learn, even from it, how better to exist.
    M.F.K. Fisher (1908–1992)