Product Rule - Proof of The Product Rule

Proof of The Product Rule

A rigorous proof of the product rule can be given using the properties of limits and the definition of the derivative as a limit of Newton's difference quotient.

If

and ƒ and g are each differentiable at the fixed number x, then

Now the difference

is the area of the big rectangle minus the area of the small rectangle in the illustration.

The region between the smaller and larger rectangle can be split into two rectangles, the sum of whose areas is

Therefore the expression in (1) is equal to

Assuming that all limits used exist, (4) is equal to

 \left(\lim_{w\to x}f(x)\right) \left(\lim_{w\to x} {g(w) - g(x) \over w - x}\right)
+ \left(\lim_{w\to x} g(w)\right) \left(\lim_{w\to x} {f(w) - f(x) \over w - x} \right).
\qquad\qquad(5)

Now

This holds because f(x) remains constant as wx.

This holds because differentiable functions are continuous (g is assumed differentiable in the statement of the product rule).

Also:

and

because f and g are differentiable at x;

We conclude that the expression in (5) is equal to

Read more about this topic:  Product Rule

Famous quotes containing the words proof of the, proof of, proof, product and/or rule:

    The fact that several men were able to become infatuated with that latrine is truly the proof of the decline of the men of this century.
    Charles Baudelaire (1821–1867)

    The fact that several men were able to become infatuated with that latrine is truly the proof of the decline of the men of this century.
    Charles Baudelaire (1821–1867)

    In the reproof of chance
    Lies the true proof of men.
    William Shakespeare (1564–1616)

    The writer’s language is to some degree the product of his own action; he is both the historian and the agent of his own language.
    Paul De Man (1919–1983)

    A right rule for a club would be, Admit no man whose presence excludes any one topic. It requires people who are not surprised and shocked, who do and let do, and let be, who sink trifles, and know solid values, and who take a great deal for granted.
    Ralph Waldo Emerson (1803–1882)