Principal Indecomposable Module - Relations

Relations

The projective indecomposable modules over some rings have very close connections with those rings' simple, projective, and indecomposable modules.

If the ring R is Artinian or even semiperfect, then R is a direct sum of principal indecomposable modules, and there is one isomorphism class of PIM per isomorphism class of simple module. To each PIM P is associated its head, P/JP, which is a simple module, being an indecomposable semi-simple module. To each simple module S is associated its projective cover P, which is a PIM, being an indecomposable, projective, cyclic module.

Similarly over a semiperfect ring, every indecomposable projective module is a PIM, and every finitely generated projective module is a direct sum of PIMs.

In the context of group algebras of finite groups over fields (which are semiperfect rings), the representation ring describes the indecomposable modules, and the modular characters of simple modules represent both a subring and a quotient ring. The representation ring over the complex field is usually better understood and since PIMs correspond to modules over the complexes using p-modular system, one can use PIMs to transfer information from the complex representation ring to the representation ring over a field of positive characteristic. Roughly speaking this is called block theory.

Over a Dedekind domain that is not a PID, the ideal class group measures the difference between projective indecomposable modules and principal indecomposable modules: the projective indecomposable modules are exactly the (modules isomorphic to) nonzero ideals and the principal indecomposable modules are precisely the (modules isomorphic to) nonzero principal ideals.

Read more about this topic:  Principal Indecomposable Module

Famous quotes containing the word relations:

    Actually, the laboring man has not leisure for a true integrity day by day; he cannot afford to sustain the manliest relations to men; his labor would be depreciated in the market.
    He has no time to be anything but a machine.
    Henry David Thoreau (1817–1862)

    As death, when we come to consider it closely, is the true goal of our existence, I have formed during the last few years such close relations with this best and truest friend of mankind, that his image is not only no longer terrifying to me, but is indeed very soothing and consoling! And I thank my God for graciously granting me the opportunity ... of learning that death is the key which unlocks the door to our true happiness.
    Wolfgang Amadeus Mozart (1756–1791)

    All of life and human relations have become so incomprehensibly complex that, when you think about it, it becomes terrifying and your heart stands still.
    Anton Pavlovich Chekhov (1860–1904)