Principal Ideal Domain

In abstract algebra, a principal ideal domain, or PID, is an integral domain in which every ideal is principal, i.e., can be generated by a single element. More generally, a principal ideal ring is a nonzero commutative ring whose ideals are principal, although some authors (e.g., Bourbaki) refer to PIDs as principal rings. The distinction is that a principal ideal ring may have zero divisors whereas a principal ideal domain cannot.

Principal ideal domains are thus mathematical objects which behave somewhat like the integers, with respect to divisibility: any element of a PID has a unique decomposition into prime elements (so an analogue of the fundamental theorem of arithmetic holds); any two elements of a PID have a greatest common divisor (although it may not be possible to find it using the Euclidean algorithm). If x and y are elements of a PID without common divisors, then every element of the PID can be written in the form ax + by.

Principal ideal domains are noetherian, they are integrally closed, they are unique factorization domains and Dedekind rings. All Euclidean domains and all fields are principal ideal domains.

Commutative ringsintegral domainsintegrally closed domainsunique factorization domainsprincipal ideal domainsEuclidean domainsfields

Read more about Principal Ideal Domain:  Examples, Modules, Properties

Famous quotes containing the words principal, ideal and/or domain:

    Silence, indifference and inaction were Hitler’s principal allies.
    Immanuel, Baron Jakobovits (b. 1921)

    We have reason to be grateful for celestial phenomena, for they chiefly answer to the ideal in man.
    Henry David Thoreau (1817–1862)

    While you are divided from us by geographical lines, which are imaginary, and by a language which is not the same, you have not come to an alien people or land. In the realm of the heart, in the domain of the mind, there are no geographical lines dividing the nations.
    Anna Howard Shaw (1847–1919)