Principal Bundle - Formal Definition

Formal Definition

A principal G-bundle, where G denotes any topological group, is a fiber bundle π : PX together with a continuous right action P × GP such that G preserves the fibers of P and acts freely and transitively on them. This implies that the fiber of the bundle is homeomorphic to the group G itself. Frequently, one requires the base space X to be Hausdorff and possibly paracompact.

Since the group action preserves the fibers of π : PX and acts transitively, it follows that the orbits of the G-action are precisely these fibers and the orbit space P/G is homeomorphic to the base space X. Because the action is free, the fibers have the structure of G-torsors. A G-torsor is a space which is homeomorphic to G but lacks a group structure since there is no preferred choice of an identity element.

An equivalent definition of a principal G-bundle is as a G-bundle π : PX with fiber G where the structure group acts on the fiber by left multiplication. Since right multiplication by G on the fiber commutes with the action of the structure group, there exists an invariant notion of right multiplication by G on P. The fibers of π then become right G-torsors for this action.

The definitions above are for arbitrary topological spaces. One can also define principal G-bundles in the category of smooth manifolds. Here π : PX is required to be a smooth map between smooth manifolds, G is required to be a Lie group, and the corresponding action on P should be smooth.

Read more about this topic:  Principal Bundle

Famous quotes containing the words formal and/or definition:

    On every formal visit a child ought to be of the party, by way of provision for discourse.
    Jane Austen (1775–1817)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)