Primitive Root Modulo n - Order of Magnitude of Primitive Roots

Order of Magnitude of Primitive Roots

The least primitive root modulo p is generally small.

Let gp be the smallest primitive root modulo p in the range 1, 2, ..., p–1.

Fridlander (1949) and Salié (1950) proved that there is a positive constant C such that for infinitely many primes gp > C log p.

It can be proved in an elementary manner that for any positive integer M there are infinitely many primes such that M < gp < pM.

Burgess (1962) proved that for every ε > 0 there is a C such that

Grosswald (1981) proved that if, then .

Shoup (1990, 1992) proved, assuming the generalized Riemann hypothesis, that gp =O(log6 p).

Read more about this topic:  Primitive Root Modulo n

Famous quotes containing the words order, magnitude, primitive and/or roots:

    The exterior must be joined to the interior to obtain anything from God, that is to say, we must kneel, pray with the lips, and so on, in order that proud man, who would not submit himself to God, may be now subject to the creature.
    Blaise Pascal (1623–1662)

    Although a man may lose a sense of his own importance when he is a mere unit among a busy throng, all utterly regardless of him, it by no means follows that he can dispossess himself, with equal facility, of a very strong sense of the importance and magnitude of his cares.
    Charles Dickens (1812–1870)

    Deep down, the US, with its space, its technological refinement, its bluff good conscience, even in those spaces which it opens up for simulation, is the only remaining primitive society.
    Jean Baudrillard (b. 1929)

    The cold smell of potato mould, the squelch and slap
    Of soggy peat, the curt cuts of an edge
    Through living roots awaken in my head.
    But I’ve no spade to follow men like them.
    Seamus Heaney (b. 1939)