Prime Number Theorem - Prime Number Theorem For Arithmetic Progressions

Prime Number Theorem For Arithmetic Progressions

Let denote the number of primes in the arithmetic progression a, a + n, a + 2n, a + 3n, … less than x. Dirichlet and Legendre conjectured, and Vallée-Poussin proved, that, if a and n are coprime, then


\pi_{n,a}(x) \sim \frac{1}{\phi(n)}\mathrm{Li}(x),

where φ(·) is the Euler's totient function. In other words, the primes are distributed evenly among the residue classes modulo n with gcd(a, n) = 1. This can be proved using similar methods used by Newman for his proof of the prime number theorem.

The Siegel–Walfisz theorem gives a good estimate for the distribution of primes in residue classes.

Read more about this topic:  Prime Number Theorem

Famous quotes containing the words prime, number, theorem and/or arithmetic:

    Weekend planning is a prime time to apply the Deathbed Priority Test: On your deathbed, will you wish you’d spent more prime weekend hours grocery shopping or walking in the woods with your kids?
    Louise Lague (20th century)

    Can a woman become a genius of the first class? Nobody can know unless women in general shall have equal opportunity with men in education, in vocational choice, and in social welcome of their best intellectual work for a number of generations.
    Anna Garlin Spencer (1851–1931)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    ‘Tis no extravagant arithmetic to say, that for every ten jokes,—thou hast got an hundred enemies; and till thou hast gone on, and raised a swarm of wasps about thine ears, and art half stung to death by them, thou wilt never be convinced it is so.
    Laurence Sterne (1713–1768)