Prime Number Theorem For Arithmetic Progressions
Let denote the number of primes in the arithmetic progression a, a + n, a + 2n, a + 3n, … less than x. Dirichlet and Legendre conjectured, and Vallée-Poussin proved, that, if a and n are coprime, then
where φ(·) is the Euler's totient function. In other words, the primes are distributed evenly among the residue classes modulo n with gcd(a, n) = 1. This can be proved using similar methods used by Newman for his proof of the prime number theorem.
The Siegel–Walfisz theorem gives a good estimate for the distribution of primes in residue classes.
Read more about this topic: Prime Number Theorem
Famous quotes containing the words prime, number, theorem and/or arithmetic:
“I came there as prime steak and now I feel like low-grade hamburger.”
—Joycelyn Elders (b. 1933)
“No Government can be long secure without a formidable Opposition. It reduces their supporters to that tractable number which can be managed by the joint influences of fruition and hope. It offers vengeance to the discontented, and distinction to the ambitious; and employs the energies of aspiring spirits, who otherwise may prove traitors in a division or assassins in a debate.”
—Benjamin Disraeli (18041881)
“To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.”
—Albert Camus (19131960)
“O! O! another stroke! that makes the third.
He stabs me to the heart against my wish.
If that be so, thy state of health is poor;
But thine arithmetic is quite correct.”
—A.E. (Alfred Edward)
