Prime Number Theorem - Prime Number Theorem For Arithmetic Progressions

Prime Number Theorem For Arithmetic Progressions

Let denote the number of primes in the arithmetic progression a, a + n, a + 2n, a + 3n, … less than x. Dirichlet and Legendre conjectured, and Vallée-Poussin proved, that, if a and n are coprime, then


\pi_{n,a}(x) \sim \frac{1}{\phi(n)}\mathrm{Li}(x),

where φ(·) is the Euler's totient function. In other words, the primes are distributed evenly among the residue classes modulo n with gcd(a, n) = 1. This can be proved using similar methods used by Newman for his proof of the prime number theorem.

The Siegel–Walfisz theorem gives a good estimate for the distribution of primes in residue classes.

Read more about this topic:  Prime Number Theorem

Famous quotes containing the words prime, number, theorem and/or arithmetic:

    Few white citizens are acquainted with blacks other than those projected by the media and the so—called educational system, which is nothing more than a system of rewards and punishments based upon one’s ability to pledge loyalty oaths to Anglo culture. The media and the “educational system” are the prime sources of racism in the United States.
    Ishmael Reed (b. 1938)

    That country is the richest which nourishes the greatest number of noble and happy human beings.
    John Ruskin (1819–1900)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    I hope I may claim in the present work to have made it probable that the laws of arithmetic are analytic judgments and consequently a priori. Arithmetic thus becomes simply a development of logic, and every proposition of arithmetic a law of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to bring logic to bear on observed facts; calculation becomes deduction.
    Gottlob Frege (1848–1925)