Primate - Anatomy, Physiology, and Morphology

Anatomy, Physiology, and Morphology

Primates have forward-facing eyes on the front of the skull; binocular vision allows accurate distance perception, useful for the brachiating ancestors of all great apes. A bony ridge above the eye sockets reinforces weaker bones in the face which are put under strain during chewing. Strepsirrhines have a postorbital bar, a bone around the eye socket, to protect their eyes; in contrast, the higher primates, haplorrhines, have evolved fully enclosed sockets.

The primate skull has a large, domed cranium, which is particularly prominent in anthropoids. The cranium protects the large brain, a distinguishing characteristic of this group. The endocranial volume (the volume within the skull) is three times greater in humans than in the greatest nonhuman primate, reflecting a larger brain size. The mean endocranial volume is 1201 cubic centimeters in humans, 469 cm3 in gorillas, 400 cm3 in chimpanzees and 397 cm3 in orangutans. The primary evolutionary trend of primates has been the elaboration of the brain, in particular the neocortex (a part of the cerebral cortex), which is involved with sensory perception, generation of motor commands, spatial reasoning, conscious thought and, in humans, language. While other mammals rely heavily on their sense of smell, the arboreal life of primates has led to a tactile, visually dominant sensory system, a reduction in the olfactory region of the brain and increasingly complex social behavior.

Primates generally have five digits on each limb (pentadactyly), with keratin nails on the end of each finger. The bottom sides of the hands and feet have sensitive pads on the fingertips. Most have opposable thumbs, a characteristic primate feature, though not limited to this order (opossums, for example, also have them). Thumbs allow some species to use tools. In primates, the combination of opposing thumbs, short fingernails (rather than claws) and long, inward-closing fingers is a relict of the ancestral practice of gripping branches, and has, in part, allowed some species to develop brachiation (swinging by the arms from tree limb to tree limb) as a significant means of locomotion. Prosimians have clawlike nails on the second toe of each foot, called toilet-claws, which they use for grooming.

The primate collar bone is retained as prominent element of the pectoral girdle; this allows the shoulder joint broad mobility. Apes have more mobile shoulder joints and arms due to the dorsal position of the scapula, broad ribcages that are flatter front-to-back, and a shorter, less mobile spine compared to Old World monkeys (with lower vertebrae greatly reduced, resulting in tail loss in some species). Old World monkeys are unlike apes in that most have tails. The only primate family with fully prehensile tails are the New World atelids, including the howler, spider, woolly spider and woolly monkeys (New World capuchins have partially prehensile tails).

Primates show an evolutionary trend towards a reduced snout. Technically, Old World monkeys are distinguished from New World monkeys by the structure of the nose, and from apes by the arrangement of their teeth. In New World monkeys, the nostrils face sideways; in Old World monkeys, they face downwards. Dental pattern in primates vary considerably; although some have lost most of their incisors, all retain at least one lower incisor. In most strepsirhines, the lower incisors and canines form a toothcomb, which is used in grooming and sometimes foraging, and the first lower premolar is shaped like a canine. Old World monkeys have eight premolars, compared with 12 in New World monkeys. The Old World species are divided into apes and monkeys depending on the number of cusps on their molars; apes have five, Old World monkeys have four, although humans may have four or five. The main hominid molar cusp (hypocone) evolved in early primate history, while the cusp of the corresponding primitive lower molar (paraconid) was lost. Prosimians are distinguished by their immobilized upper lips, the moist tip of their noses and forward-facing lower front teeth.

The evolution of color vision in primates is unique among most eutherian mammals. While the remote vertebrate ancestors of the primates possessed three color vision (trichromaticism), the nocturnal, warm-blooded, mammalian ancestors lost one of three cones in the retina during the Mesozoic era. Fish, reptiles and birds are therefore trichromatic or tetrachromatic, while all mammals, with the exception of some primates and marsupials, are dichromats or monochromats (totally color blind). Nocturnal primates, such as the night monkeys and bush babies, are often monochromatic. Catarrhines are routinely trichromatic due to a gene duplication of the red-green opsin gene at the base of their lineage, 30 to 40 million years ago. Platyrrhines, on the other hand, are trichromatic in a few cases only. Specifically, individual females must be heterozygous for two alleles of the opsin gene (red and green) located on the same locus of the X chromosome. Males, therefore, can only be dichromatic, while females can be either dichromatic or trichromatic. Color vision in strepsirrhines is not as well understood; however, research indicates a range of color vision similar to that found in platyrrhines.

Like catarrhines, howler monkeys (a family of platyrrhines) show routine trichromatism that has been traced to an evolutionarily recent gene duplication. Howler monkeys are one of the most specialized leaf-eaters of the New World monkeys; fruits are not a major part of their diets, and the type of leaves they prefer to consume (young, nutritive, and digestible) are detectable only by a red-green signal. Field work exploring the dietary preferences of howler monkeys suggests routine trichromaticism was selected by environment.

Read more about this topic:  Primate

Famous quotes containing the word morphology:

    I ascribe a basic importance to the phenomenon of language.... To speak means to be in a position to use a certain syntax, to grasp the morphology of this or that language, but it means above all to assume a culture, to support the weight of a civilization.
    Frantz Fanon (1925–1961)