Preadditive Category - Biproducts

Biproducts

Any finite product in a preadditive category must also be a coproduct, and conversely. In fact, finite products and coproducts in preadditive categories can be characterised by the following biproduct condition:

The object B is a biproduct of the objects A1,...,An if and only if there are projection morphisms pj: BAj and injection morphisms ij: AjB, such that (i1 o p1) + ··· + (in o pn) is the identity morphism of B, pj o ij is the identity morphism of Aj, and pj o ik is the zero morphism from Ak to Aj whenever j and k are distinct.

This biproduct is often written A1 ⊕ ··· ⊕ An, borrowing the notation for the direct sum. This is because the biproduct in well known preadditive categories like Ab is the direct sum. However, although infinite direct sums make sense in some categories, like Ab, infinite biproducts do not make sense.

The biproduct condition in the case n = 0 simplifies drastically; B is a nullary biproduct if and only if the identity morphism of B is the zero morphism from B to itself, or equivalently if the hom-set Hom(B,B) is the trivial ring. Note that because a nullary biproduct will be both terminal (a nullary product) and coterminal (a nullary coproduct), it will in fact be a zero object. Indeed, the term "zero object" originated in the study of preadditive categories like Ab, where the zero object is the zero group.

A preadditive category in which every biproduct exists (including a zero object) is called additive. Further facts about biproducts that are mainly useful in the context of additive categories may be found under that subject.

Read more about this topic:  Preadditive Category