In number theory, a practical number or panarithmic number is a positive integer n such that all smaller positive integers can be represented as sums of distinct divisors of n. For example, 12 is a practical number because all the numbers from 1 to 11 can be expressed as sums of its divisors 1, 2, 3, 4, and 6: as well as these divisors themselves, we have 5=3+2, 7=6+1, 8=6+2, 9=6+3, 10=6+3+1, and 11=6+3+2.
The sequence of practical numbers (sequence A005153 in OEIS) begins
- 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48, 54, ....
Practical numbers were used by Fibonacci in his Liber Abaci (1202) in connection with the problem of representing rational numbers as Egyptian fractions. Fibonacci does not formally define practical numbers, but he gives a table of Egyptian fraction expansions for fractions with practical denominators.
The name "practical number" is due to Srinivasan (1948), who first attempted a classification of these numbers that was completed by Stewart (1954) and SierpiĆski (1955). This characterization makes it possible to determine whether a number is practical by examining its prime factorization. Any even perfect number and any power of two is also a practical number.
Practical numbers have also been shown to be analogous with prime numbers in many of their properties.
Read more about Practical Number: Characterization of Practical Numbers, Relation To Other Classes of Numbers, Practical Numbers and Egyptian Fractions, Analogies With Prime Numbers
Famous quotes containing the words practical and/or number:
“After all, the practical reason why, when the power is once in the hands of the people, a majority are permitted, and for a long period continue, to rule is not because they are most likely to be in the right, nor because this seems fairest to the minority, but because they are physically the strongest. But a government in which the majority rule in all cases cannot be based on justice, even as far as men understand it.”
—Henry David Thoreau (18171862)
“The growing good of the world is partly dependent on unhistoric acts; and that things are not so ill with you and me as they might have been, is half owing to the number who lived faithfully a hidden life, and rest in unvisited tombs.”
—George Eliot [Mary Ann (or Marian)