In elementary plane geometry, the power of a point is a real number h that reflects the relative distance of a given point from a given circle. Specifically, the power of a point P with respect to a circle C of radius r is defined (Figure 1)
where s is the distance from P to the center O of the circle. By this definition, points inside the circle have negative power, points outside have positive power, and points on the circle have zero power. For external points, the power equals the square of the radius of a circle centered on the given point that intersects the given circle orthogonally, i.e., at right angles (Figure 2). The power of a point is also known as the point's circle power or the power of a circle with respect to the point.
More generally, Laguerre defined the power of a point with respect to any algebraic curve in a similar way.
The power of a point can be defined equivalently as the product of distances from the point P to the two intersection points of any ray emanating from P. For example, in Figure 1, a ray emanating from P intersects the circle in two points, M and N, whereas a tangent ray intersects the circle in one point T; the horizontal ray from P intersects the circle at A and B, the endpoints of the diameter. Their respective products of distances are equal to each other and to the power of point P in that circle
This equality is sometimes known as the "secant-tangent theorem", "intersecting chords theorem", or the "power-of-a-point theorem".
The power of a point is used in many geometrical definitions and proofs. For example, the radical axis of two given circles is the straight line consisting of points that have equal power to both circles. For each point on this line, there is a unique circle centered on that point that intersects both given circles orthogonally; equivalently, tangents of equal length can be drawn from that point to both given circles. Similarly, the radical center of three circles is the unique point with equal power to all three circles. There exists a unique circle, centered on the radical center, that intersects all three given circles orthogonally, equivalently, tangents drawn from the radical center to all three circles have equal length. The power diagram of a set of circles divides the plane into regions within which the circle minimizing the power is constant.
Read more about Power Of A Point: Orthogonal Circle, Theorems, Darboux Product, Laguerre's Theorem
Famous quotes containing the words power of a, power of, power and/or point:
“Now different races and nationalities cherish different ideals of society that stink in each others nostrils with an offensiveness beyond the power of any but the most monstrous private deed.”
—Rebecca West (18921983)
“All in all, punishment hardens and renders people more insensible; it concentrates; it increases the feeling of estrangement; it strengthens the power of resistance.”
—Friedrich Nietzsche (18441900)
“Through a series of gradual power losses, the modern parent is in danger of losing sight of her own child, as well as her own vision and style. Its a very big price to pay emotionally. Too bad its often accompanied by an equally huge price financially.”
—Sonia Taitz (20th century)
“As one delves deeper and deeper into Etiquette, disquieting thoughts come. That old Is- It-Worth-It Blues starts up again softly, perhaps, but plainly. Those who have mastered etiquette, who are entirely, impeccably right, would seem to arrive at a point of exquisite dullness. The letters and the conversations of the correct, as quoted by Mrs. Post, seem scarcely worth the striving for. The rules for finding topics of conversation fall damply on the spirit.”
—Dorothy Parker (18931967)