Power Line Communication - Long Haul, Low Frequency

Long Haul, Low Frequency

Utility companies use special coupling capacitors to connect radio transmitters to the power-frequency AC conductors. Frequencies used are in the range of 24 to 500 kHz, with transmitter power levels up to hundreds of watts. These signals may be impressed on one conductor, on two conductors or on all three conductors of a high-voltage AC transmission line. Several PLC channels may be coupled onto one HV line. Filtering devices are applied at substations to prevent the carrier frequency current from being bypassed through the station apparatus and to ensure that distant faults do not affect the isolated segments of the PLC system. These circuits are used for control of switchgear, and for protection of transmission lines. For example, a protective relay can use a PLC channel to trip a line if a fault is detected between its two terminals, but to leave the line in operation if the fault is elsewhere on the system.

On some powerlines in the former Soviet Union, PLC-signals are not fed into the high voltage line, but in the ground conductors, which are mounted on insulators at the pylons .

While utility companies use microwave and now, increasingly, fiber optic cables for their primary system communication needs, the power-line carrier apparatus may still be useful as a backup channel or for very simple low-cost installations that do not warrant installing fiber optic lines.

Power line carrier communication (PLCC) is mainly used for telecommunication, tele-protection and tele-monitoring between electrical substations through power lines at high voltages, such as 110 kV, 220 kV, 400 kV. The major benefit is the union of two applications in a single system, which is particularly useful for monitoring electric equipment and advanced energy management techniques (such as OpenADR and OpenHAN).

The modulation generally used in these system is amplitude modulation. The carrier frequency range is used for audio signals, protection and a pilot frequency. The pilot frequency is a signal in the audio range that is transmitted continuously for failure detection.

The voice signal is compressed and filtered into the 300 Hz to 4000 Hz range, and this audio frequency is mixed with the carrier frequency. The carrier frequency is again filtered, amplified and transmitted. The transmission power of these HF carrier frequencies will be in the range of 0 to +32 dbW. This range is set according to the distance between substations. PLCC can be used for interconnecting private branch exchanges (PBXs).

To sectionalize the transmission network and protect against failures, a "wave trap" is connected in series with the power (transmission) line. They consist of one or more sections of resonant circuits, which block the high frequency carrier waves (24 kHz to 500 kHz) and let power frequency current (50 Hz - 60 Hz) pass through. Wave traps are used in switchyard of most power stations to prevent carrier from entering the station equipment. Each wave trap has a lightning arrester to protect it from surge voltages.

A coupling capacitor is used to connect the transmitters and receivers to the high voltage line. This provides low impedance path for carrier energy to HV line but blocks the power frequency circuit by being a high impedance path. The coupling capacitor may be part of a capacitor voltage transformer used for voltage measurement.

Power line carriers may change its transmission system from analog to digital to enable Internet Protocol devices. Digital power line carrier (DPLC) was developed for digital transmission via power lines. DPLC has the required quality of bit error rate characteristics and transmission ability such as transmitting information from monitored electric-supply stations and images.

Power line carrier systems have long been a favorite at many utilities because it allows them to reliably move data over an infrastructure that they control. Many technologies are capable of performing multiple applications. For example, a communication system bought initially for automatic meter reading can sometimes also be used for load control or for demand response applications.

A PLC carrier repeating station is a facility, at which a power line communication (PLC) signal on a powerline is refreshed. Therefore the signal is filtered out from the powerline, demodulated and modulated on a new carrier frequency, and then reinjected onto the powerline again. As PLC signals can carry long distances (several 100 kilometres), such facilities only exist on very long power lines using PLC equipment.

PLC is one of the technologies used for automatic meter reading. Both one-way and two-way systems have been successfully used for decades. Interest in this application has grown substantially in recent history—not so much because there is an interest in automating a manual process, but because there is an interest in obtaining fresh data from all metered points in order to better control and operate the system. PLC is one of the technologies being used in Advanced Metering Infrastructure (AMI) systems.

In a one-way (inbound only) system, readings "bubble up" from end devices (such as meters), through the communication infrastructure, to a "master station" which publishes the readings. A one-way system might be lower-cost than a two-way system, but also is difficult to reconfigure should the operating environment change.

In a two-way system (supporting both outbound and inbound), commands can be broadcast out from the master station to end devices (meters) -- allowing for reconfiguration of the network, or to obtain readings, or to convey messages, etc. The device at the end of the network may then respond (inbound) with a message that carries the desired value. Outbound messages injected at a utility substation will propagate to all points downstream. This type of broadcast allows the communication system to simultaneously reach many thousands of devices—all of which are known to have power, and have been previously identified as candidates for load shed. PLC also may be a component of a Smart Grid.

Read more about this topic:  Power Line Communication

Famous quotes containing the words long and/or frequency:

    He drew the curse upon the world, and cracked
    The whole frame with his fall.
    This made him long for home, as loth to stay
    With murmurers and foes;
    Henry Vaughan (1622–1695)

    The frequency of personal questions grows in direct proportion to your increasing girth. . . . No one would ask a man such a personally invasive question as “Is your wife having natural childbirth or is she planning to be knocked out?” But someone might ask that of you. No matter how much you wish for privacy, your pregnancy is a public event to which everyone feels invited.
    Jean Marzollo (20th century)