Potential Well - Quantum Confinement

Quantum Confinement

The quantum confinement effect can be observed once the diameter of the particle is of the same magnitude as the wavelength of the electron wave function. When materials are this small, their electronic and optical properties deviate substantially from those of bulk materials.

A particle behaves as if it were free when the confining dimension is large compared to the wavelength of the particle. During this state, the bandgap remains at its original energy due to a continuous energy state. However, as the confining dimension decreases and reaches a certain limit, typically in nanoscale, the energy spectrum turns to discrete. As a result, the bandgap becomes size dependent. This ultimately results in a blue shift in optical illumination as the size of the particles decreases.

Specifically, the effect describes the phenomenon resulting from electrons and electron holes being squeezed into a dimension that approaches a critical quantum measurement, called the exciton Bohr radius. In current application, a quantum dot such as a small sphere confines in three dimensions, a quantum wire confines in two dimensions, and a quantum well confines only in one dimension. These are also known as zero-, one- and two-dimensional potential wells, respectively. In these cases they refer to the number of dimensions in which a confined particle can act as a free carrier. See external links, below, for application examples in biotechnology and solar cell technology.

Read more about this topic:  Potential Well

Famous quotes containing the words quantum and/or confinement:

    But how is one to make a scientist understand that there is something unalterably deranged about differential calculus, quantum theory, or the obscene and so inanely liturgical ordeals of the precession of the equinoxes.
    Antonin Artaud (1896–1948)

    We’re all of us sentenced to solitary confinement inside our own skins, for life!
    Tennessee Williams (1914–1983)