Positive and Negative Parts - Measure-theoretic Properties

Measure-theoretic Properties

Given a measurable space (X,Σ), an extended real-valued function f is measurable if and only if its positive and negative parts are. Therefore, if such a function f is measurable, so is its absolute value |f|, being the sum of two measurable functions. The converse, though, does not necessarily hold: for example, taking f as

where V is a Vitali set, it is clear that f is not measurable, but its absolute value is, being a constant function.

The positive part and negative part of a function are used to define the Lebesgue integral for a real-valued function. Analogously to this decomposition of a function, one may decompose a signed measure into positive and negative parts — see the Hahn decomposition theorem.

Read more about this topic:  Positive And Negative Parts

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)