Porosity - Porosity in Earth Sciences and Construction

Porosity in Earth Sciences and Construction

Used in geology, hydrogeology, soil science, and building science, the porosity of a porous medium (such as rock or sediment) describes the fraction of void space in the material, where the void may contain, for example, air or water. It is defined by the ratio:

where VV is the volume of void-space (such as fluids) and VT is the total or bulk volume of material, including the solid and void components. Both the mathematical symbols and are used to denote porosity.

Porosity is a fraction between 0 and 1, typically ranging from less than 0.01 for solid granite to more than 0.5 for peat and clay. It may also be represented in percent terms by multiplying the fraction by 100.

The porosity of a rock, or sedimentary layer, is an important consideration when attempting to evaluate the potential volume of water or hydrocarbons it may contain. Sedimentary porosity is a complicated function of many factors, including but not limited to: rate of burial, depth of burial, the nature of the connate fluids, the nature of overlying sediments (which may impede fluid expulsion). One commonly used relationship between porosity and depth is given by the Athy (1930) equation:

where is the surface porosity, is the compaction coefficient (m−1) and is depth (m).

A value for porosity can alternatively be calculated from the bulk density and particle density :

Normal particle density is assumed to be approximately 2.65 g/cm3, although a better estimation can be obtained by examining the lithology of the particles.

Read more about this topic:  Porosity

Famous quotes containing the words earth, sciences and/or construction:

    You mean that this little pebble’s been out there hot-roddin’ around the universe?
    —Theodore Simonson. Irvin S. Yeaworth, Jr.. Mooch, The Blob, examining the “meteor” that carried the Blob to earth (1958)

    The prime lesson the social sciences can learn from the natural sciences is just this: that it is necessary to press on to find the positive conditions under which desired events take place, and that these can be just as scientifically investigated as can instances of negative correlation. This problem is beyond relativity.
    Ruth Benedict (1887–1948)

    There is, I think, no point in the philosophy of progressive education which is sounder than its emphasis upon the importance of the participation of the learner in the formation of the purposes which direct his activities in the learning process, just as there is no defect in traditional education greater than its failure to secure the active cooperation of the pupil in construction of the purposes involved in his studying.
    John Dewey (1859–1952)