Popper's Experiment - Popper's Experiment and Faster-than-light Signalling

Popper's Experiment and Faster-than-light Signalling

The expected additional momentum scatter which Popper wrongly attributed to the Copenhagen interpretation can be interpreted as allowing faster-than-light communication, which is thought to be impossible, even in quantum mechanics. Indeed some authors have criticized Popper's experiment based on this impossibility of superluminal communication in quantum mechanics. Use of quantum correlations for faster-than-light communication is thought to be flawed because of the no-communication theorem in quantum mechanics. However the theorem is not applicable to this experiment. In this experiment, the "sender" tries to signal 0 and 1 by narrowing the slit, or widening it, thus changing the probability distribution among the "receiver's" detectors. If the no-communication theorem were applicable, then no matter if the sender widens the slit or narrows it, the receiver should see the same probability distribution among his detectors. This is true, regardless of whether the device was used for communication (i.e. sans coincidence circuit), or not (i.e. in coincidence).

Read more about this topic:  Popper's Experiment

Famous quotes containing the words popper and/or experiment:

    It is clear that everybody interested in science must be interested in world 3 objects. A physical scientist, to start with, may be interested mainly in world 1 objects—say crystals and X-rays. But very soon he must realize how much depends on our interpretation of the facts, that is, on our theories, and so on world 3 objects. Similarly, a historian of science, or a philosopher interested in science must be largely a student of world 3 objects.
    —Karl Popper (1902–1994)

    The playing adult steps sideward into another reality; the playing child advances forward to new stages of mastery....Child’s play is the infantile form of the human ability to deal with experience by creating model situations and to master reality by experiment and planning.
    Erik H. Erikson (20th century)