Polynomial Basis

In mathematics, the polynomial basis is a basis for finite extensions of finite fields.

Let α ∈ GF(pm) be the root of a primitive polynomial of degree m over GF(p). The polynomial basis of GF(pm) is then


\{ 1, \alpha, \ldots, \alpha^{m-1}\}

The set of elements of GF(pm) can then be represented as:


\{ 0, 1, \alpha, \alpha^2, \ldots, \alpha^{p^{m}-2} \}

using Zech's logarithms.

Read more about Polynomial Basis:  Addition, Multiplication, Squaring, Inversion, Usage

Famous quotes containing the word basis:

    The terrors of the child are quite reasonable, and add to his loveliness; for his utter ignorance and weakness, and his enchanting indignation on such a small basis of capital compel every bystander to take his part.
    Ralph Waldo Emerson (1803–1882)