Polymorphism (biology) - Ecology

Ecology

Selection, whether natural or artificial, changes the frequency of morphs within a population; this occurs when morphs reproduce with different degrees of success. A genetic (or balanced) polymorphism usually persists over many generations, maintained by two or more opposed and powerful selection pressures. Diver (1929) found banding morphs in Cepaea nemoralis could be seen in pre-fossil shells going back to the Mesolithic Holocene. Apes have similar blood groups to humans; this suggests rather strongly that this kind of polymorphism is quite ancient, at least as far back as the last common ancestor of the apes and man, and possibly even further.

The relative proportions of the morphs may vary; the actual values are determined by the effective fitness of the morphs at a particular time and place. The mechanism of heterozygote advantage assures the population of some alternative alleles at the locus or loci involved. Only if competing selection disappears will an allele disappear. However, heterozygote advantage is not the only way a polymorphism can be maintained. Apostatic selection, whereby a predator consumes a common morph whilst overlooking rarer morphs is possible and does occur. This would tend to preserve rarer morphs from extinction.

A polymorphic population does not initiate speciation; nor does it prevent speciation. It has little or nothing to do with species splitting. However, it has a lot to do with the adaptation of a species to its environment, which may vary in colour, food supply, predation and in many other ways. Polymorphism is one good way the opportunities get to be used; it has survival value, and the selection of modifier genes may reinforce the polymorphism.

Read more about this topic:  Polymorphism (biology)

Famous quotes containing the word ecology:

    ... the fundamental principles of ecology govern our lives wherever we live, and ... we must wake up to this fact or be lost.
    Karin Sheldon (b. c. 1945)