Polyhedral Combinatorics - Faces and Face-counting Vectors

Faces and Face-counting Vectors

A face of a convex polytope P may be defined as the intersection of P and a closed halfspace H such that the boundary of H contains no interior point of P. The dimension of a face is the dimension of this hull. The 0-dimensional faces are the vertices themselves, and the 1-dimensional faces (called edges) are line segments connecting pairs of vertices. Note that this definition also includes as faces the empty set and the whole polytope P. If P itself has dimension d, the faces of P with dimension d − 1 are called facets of P and the faces with dimension d − 2 are called ridges. The faces of P may be partially ordered by inclusion, forming a face lattice that has as its top element P itself and as its bottom element the empty set.

A key tool in polyhedral combinatorics is the ƒ-vector of a polytope, the vector (f0, f1, ..., fd − 1) where fi is the number of i-dimensional features of the polytope. For instance, a cube has eight vertices, twelve edges, and six facets, so its ƒ-vector is (8,12,6). The dual polytope has a ƒ-vector with the same numbers in the reverse order; thus, for instance, the regular octahedron, the dual to a cube, has the ƒ-vector (6,12,8). The extended ƒ-vector is formed by concatenating the number one at each end of the ƒ-vector, counting the number of objects at all levels of the face lattice; on the left side of the vector, f-1 = 1 counts the empty set as a face, while on the right side, fd = 1 counts P itself. For the cube the extended ƒ-vector is (1,8,12,6,1) and for the octahedron it is (1,6,12,8,1). Although the vectors for these example polyhedra are unimodal (the coefficients, taken in left to right order, increase to a maximum and then decrease), there are higher dimensional polytopes for which this is not true.

For simplicial polytopes (polytopes in which every facet is a simplex), it is often convenient to transform these vectors, producing a different vector called the h-vector. If we interpret the terms of the ƒ-vector (omitting the final 1) as coefficients of a polynomial ƒ(x) = Σfixdi − 1 (for instance, for the octahedron this gives the polynomial ƒ(x) = x3 + 6x2 + 12x + 8), then the h-vector lists the coefficients of the polynomial h(x) = ƒ(x − 1) (again, for the octahedron, h(x) = x3 + 3x2 + 3x + 1). As Ziegler writes, “for various problems about simplicial polytopes, h-vectors are a much more convenient and concise way to encode the information about the face numbers than ƒ-vectors.”

Read more about this topic:  Polyhedral Combinatorics

Famous quotes containing the words faces and and/or faces:

    Lawn as white as driven snow,
    Cyprus black as e’er was crow,
    Gloves as sweet as damask roses,
    Masks for faces and for noses.
    William Shakespeare (1564–1616)

    Much wondering to see upon all hands, of wattles and woodwork made,
    Your bell-mounted churches, and guardless the sacred cairn and the rath,
    And a small and a feeble populace stooping with mattock and spade,
    Or weeding or ploughing with faces a-shining with much-toil wet;
    While in this place and that place, with bodies unglorious, their chieftains stood....
    William Butler Yeats (1865–1939)