Polydivisible Number - Counting Polydivisible Numbers

Counting Polydivisible Numbers

We can find the actual values of F(n) by counting the number of polydivisible numbers with a given length :

Length n F(n) Estimate of F(n) Length n F(n) Estimate of F(n) Length n F(n) Estimate of F(n)
1 9 9 11 2225 2255 21 18 17
2 45 45 12 2041 1879 22 12 8
3 150 150 13 1575 1445 23 6 3
4 375 375 14 1132 1032 24 3 1
5 750 750 15 770 688 25 1 1
6 1200 1250 16 571 430
7 1713 1786 17 335 253
8 2227 2232 18 180 141
9 2492 2480 19 90 74
10 2492 2480 20 44 37

There are 20,456 polydivisible numbers altogether, and the longest polydivisible number, which has 25 digits, is :

360 852 885 036 840 078 603 672 5

Read more about this topic:  Polydivisible Number

Famous quotes containing the words counting and/or numbers:

    Is it not manifest that our academic institutions should have a wider scope; that they should not be timid and keep the ruts of the last generation, but that wise men thinking for themselves and heartily seeking the good of mankind, and counting the cost of innovation, should dare to arouse the young to a just and heroic life; that the moral nature should be addressed in the school-room, and children should be treated as the high-born candidates of truth and virtue?
    Ralph Waldo Emerson (1803–1882)

    He bundles every forkful in its place,
    And tags and numbers it for future reference,
    So he can find and easily dislodge it
    In the unloading. Silas does that well.
    He takes it out in bunches like birds’ nests.
    Robert Frost (1874–1963)