Counting Polydivisible Numbers
We can find the actual values of F(n) by counting the number of polydivisible numbers with a given length :
Length n | F(n) | Estimate of F(n) | Length n | F(n) | Estimate of F(n) | Length n | F(n) | Estimate of F(n) | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | 9 | 9 | 11 | 2225 | 2255 | 21 | 18 | 17 | ||
2 | 45 | 45 | 12 | 2041 | 1879 | 22 | 12 | 8 | ||
3 | 150 | 150 | 13 | 1575 | 1445 | 23 | 6 | 3 | ||
4 | 375 | 375 | 14 | 1132 | 1032 | 24 | 3 | 1 | ||
5 | 750 | 750 | 15 | 770 | 688 | 25 | 1 | 1 | ||
6 | 1200 | 1250 | 16 | 571 | 430 | |||||
7 | 1713 | 1786 | 17 | 335 | 253 | |||||
8 | 2227 | 2232 | 18 | 180 | 141 | |||||
9 | 2492 | 2480 | 19 | 90 | 74 | |||||
10 | 2492 | 2480 | 20 | 44 | 37 |
There are 20,456 polydivisible numbers altogether, and the longest polydivisible number, which has 25 digits, is :
- 360 852 885 036 840 078 603 672 5
Read more about this topic: Polydivisible Number
Famous quotes containing the words counting and/or numbers:
“If all power is in the people, if there is no higher law than their will, and if by counting their votes, their will may be ascertainedthen the people may entrust all their power to anyone, and the power of the pretender and the usurper is then legitimate. It is not to be challenged since it came originally from the sovereign people.”
—Walter Lippmann (18891974)
“Green grow the rushes-O
What is your one-O?”
—Unknown. Carol of the Numbers (l. 23)