General Conic Sections
The concepts of pole, polar and reciprocation can be generalized from circles to other conic sections which are the ellipse, hyperbola and parabola. This generalization is possible because conic sections result from a reciprocation of a circle in another circle, and the properties involved, such as incidence and the cross-ratio, are preserved under all projective transformations.
A general conic section may be written as a second-degree equation in the Cartesian coordinates (x, y) of the plane
where Axx, Axy, Ayy, Bx, By, and C are the constants defining the equation. For such a conic section, the polar line to a given pole point (ξ, η) is defined by the equation
where D, E and F are likewise constants that depend on the pole coordinates (ξ, η)
If the pole lies on the conic section, its polar is tangent to the conic section. However, the pole need not lie on the conic section.
Read more about this topic: Pole (geometry)
Famous quotes containing the words general and/or sections:
“The General Order is always to manoeuver in a body and on the attack; to maintain strict but not pettifogging discipline; to keep the troops constantly at the ready; to employ the utmost vigilance on sentry go; to use the bayonet on every possible occasion; and to follow up the enemy remorselessly until he is utterly destroyed.”
—Lazare Carnot (17531823)
“I have a new method of poetry. All you got to do is look over your notebooks ... or lay down on a couch, and think of anything that comes into your head, especially the miseries.... Then arrange in lines of two, three or four words each, dont bother about sentences, in sections of two, three or four lines each.”
—Allen Ginsberg (b. 1926)