Pole (geometry) - General Conic Sections

General Conic Sections

The concepts of pole, polar and reciprocation can be generalized from circles to other conic sections which are the ellipse, hyperbola and parabola. This generalization is possible because conic sections result from a reciprocation of a circle in another circle, and the properties involved, such as incidence and the cross-ratio, are preserved under all projective transformations.

A general conic section may be written as a second-degree equation in the Cartesian coordinates (x, y) of the plane


A_{xx} x^{2} + 2 A_{xy} xy + A_{yy} y^{2} + 2 B_{x} x + 2 B_{y} y + C = 0\,

where Axx, Axy, Ayy, Bx, By, and C are the constants defining the equation. For such a conic section, the polar line to a given pole point (ξ, η) is defined by the equation


D x + E y + F = 0\,

where D, E and F are likewise constants that depend on the pole coordinates (ξ, η)


D = A_{xx} \xi + A_{xy} \eta + B_{x}\,

E = A_{xy} \xi + A_{yy} \eta + B_{y}\,

F = B_{x} \xi + B_{y} \eta + C\,

If the pole lies on the conic section, its polar is tangent to the conic section. However, the pole need not lie on the conic section.

Read more about this topic:  Pole (geometry)

Famous quotes containing the words general and/or sections:

    There is a mortifying experience in particular, which does not fail to wreak itself also in the general history; I mean “the foolish face of praise,” the forced smile which we put on in company where we do not feel at ease, in answer to conversation which does not interest us. The muscles, not spontaneously moved but moved, by a low usurping wilfulness, grow tight about the outline of the face, with the most disagreeable sensation.
    Ralph Waldo Emerson (1803–1882)

    Childhood lasts all through life. It returns to animate broad sections of adult life.... Poets will help us to find this living childhood within us, this permanent, durable immobile world.
    Gaston Bachelard (1884–1962)