Plyometrics - Methodology: Plyometrics That Utilize The Shock Method

Methodology: Plyometrics That Utilize The Shock Method

In the depth jump, the athlete experiences a shock on landing in which the hip, knee and ankle extensor muscles undergo a powerful eccentric contraction. In this, the muscles are forcibly tensed in an eccentric contraction. For the muscles to respond explosively, the eccentric contraction is then quickly switched to the isometric (when the downward movement stops) and then the concentric contraction, in a minimum amount of time. This allows the athlete to jump upward as high as possible. For simplicity, rather than always mentioning the isometric contraction, which always occurs in the transition from the eccentric to the concentric contraction, it is usually omitted.

In the eccentric contraction, the muscles are involuntarily and forcefully lengthened while in the concentric contraction the muscles are shortened after being pre-tensed. Most of the stretching and shortening takes place in the tendons that attach to the muscles involved rather than in the muscles. To execute the depth jump, the athlete stands on a raised platform, usually not greater than 20-30 inches high, and then steps out and drops down in a vertical pathway to make contact with the floor. The exact height used by most athletes is usually quite low in the early stages of training. The key is how high the athlete jumps in relation to the height of the takeoff platform. Technique and jump height are most important at this time. While the body is dropping the athlete consciously prepares the muscles for the landing impact by pre-tensing the muscles. The flooring upon which the athlete drops down on should be somewhat resilient, mainly for prevention of injury. Upon making contact with the floor, the athlete then goes into slight leg flexion to absorb some of the forces for safety. However, the main role played by the muscles and tendons is to withstand the forces that are experienced in the landing. These forces are withstood in eccentric contraction. When muscle contraction is sufficiently great, it is able to stop the downward movement very quickly.

This phase is sometimes called the phase of amortization in which the athlete absorbs some of the forces and stops downward movement by the strong eccentric contraction of the muscles. The strong eccentric contraction prepares the muscles to switch to the concentric contraction in an explosive manner for takeoff.

When the athlete drops down to the floor, the body experiences an impact upon landing. The higher the height of the step-off platform, the greater are the impact forces upon landing. This creates a shock to the body which the body responds to by undergoing a strong involuntary muscular contraction to prevent the body from collapsing on the ground. This in turn produces great tension in the muscles and tendons which is then given back in a return upward movement. The faster the change in the muscular contractions, the greater is the power created and the resulting height attained.

More specifically, the muscles and tendons undergo a stretch (eccentric contraction) on the landing which is needed to absorb some of the forces generated but most importantly, to withstand the forces that are produced by the shock that occurs on the landing. The greater the shock (forces experienced on landing), the stronger is the eccentric contraction which in turn, produces even greater tension. This tension which is potential force, is then given back in the return movement when the muscular contractions switch to the concentric or shortening regime.

However, for maximum return of energy, minimum time must elapse from when the forces are received to when they are returned. The greater the time between receiving the forces and giving them back, the less is the return and the less the height that can be achieved in the jump. Most of the lengthening and shortening occurs in the respective muscle tendons which have greater elasticity.

Another way of saying this is that the faster the switching from the eccentric to the concentric contraction, the greater will be the force produced and the greater will be the return movement. The speed of the switching is extremely fast; 0.20 seconds or less. For example, high-level sprinters execute the switch from the eccentric contraction that occurs when the foot hits the ground to the concentric contraction when the foot breaks contact with the ground, in less than 0.10 seconds. In world-class sprinters, the time is approximately 0.08 seconds. The exact platform height used by most athletes in the depth jump should be less than 30 inches in the early stages of training. Most athletes start at approximately 12 inches after doing some jump training. They then gradually work up to 20 inches and then to 30 inches depending upon how well the jumps are executed. The main criterion is to make sure that the athlete is jumping as high as possible on every jump.

If the athlete gradually improves his jump height, the same platform height is continued until increases in jump height are no longer observed. At this time takeoff height is increased by a few inches. If the athlete continually fails to jump very high, the height of the drop-down is lowered somewhat. Most important here is how high the athlete jumps after the drop-down.

The maximum platform height used by a high level athlete is no more than 40 inches. Rather than developing greater explosive power this height leads to more eccentric strength development. Because of this, going higher than 30 inches is usually counterproductive and may lead to injury. This occurs when the intensity of the forced involuntary eccentric contraction upon landing is greater than the muscles can withstand. In addition, the athlete will not be able to execute a quick return (fast transition between muscular contractions) which is the key to successful execution of explosive plyometrics.

Because of the forces involved and the quickness of execution, the central nervous system is strongly involved. Because of this, it is important that the athlete not overdo using the shock plyometric method. Doing so will lead to great fatigue and according to Verkhoshansky, sleep disturbances. For example, athletes have great difficulty sleeping well if they execute too many depth jumps. This indicates that athletes must be well prepared physically before doing this type of training.

Technique of jumping is also very important when executing plyometric exercises. In essence, the athlete goes into a slight squat (crouch) upon landing in which there is flexion in the hip, knee and ankle joints. In the takeoff or jump upward, the jump is executed in a sequence initiated by hip joint extension followed by knee joint extension which begins during the hip joint extension. As the knee joint extension is taking place, ankle joint extension begins and is the only action that occurs as the takeoff (breaking contact with the ground) takes place. All three actions contribute force to the upward jump but the knee joint extension is the major contributor.

Read more about this topic:  Plyometrics

Famous quotes containing the words utilize, shock and/or method:

    If the Russians have gone too far in subjecting the child and his peer group to conformity to a single set of values imposed by the adult society, perhaps we have reached the point of diminishing returns in allowing excessive autonomy and in failing to utilize the constructive potential of the peer group in developing social responsibility and consideration for others.
    Urie Bronfenbrenner (b. 1917)

    Without passion man is a mere latent force and possibility, like the flint which awaits the shock of the iron before it can give forth its spark.
    Henri-Frédéric Amiel (1821–1881)

    A method of child-rearing is not—or should not be—a whim, a fashion or a shibboleth. It should derive from an understanding of the developing child, of his physical and mental equipment at any given stage, and, therefore, his readiness at any given stage to adapt, to learn, to regulate his behavior according to parental expectations.
    Selma H. Fraiberg (20th century)