Planck's Law

In physics, Planck's law describes the amount of electromagnetic energy with a certain wavelength radiated by a black body in thermal equilibrium (i.e. the spectral radiance of a black body). The law is named after Max Planck, who originally proposed it in 1900. The law was the first to accurately describe black body radiation, and resolved the ultraviolet catastrophe. It is a pioneer result of modern physics and quantum theory.

In terms of frequency or wavelength (λ), Planck's law is written:

where B is the spectral radiance, T is the absolute temperature of the black body, kB is the Boltzmann constant, h is the Planck constant, and c is the speed of light. However these are not the only ways to express the law; expressing it in terms of wavenumber rather than frequency or wavelength is also common, as are expression in terms of the number of photons emitted at a certain wavelength, rather than energy emitted. In the limit of low frequencies (i.e. long wavelengths), Planck's law becomes the Rayleigh–Jeans law, while in the limit of high frequencies (i.e. small wavelengths) it tends to the Wien approximation.

Max Planck developed the law in 1900, originally with only empirically determined constants, and later showed that, expressed as an energy distribution, it is the unique stable distribution for radiation in thermodynamic equilibrium. As an energy distribution, it is one of a family of thermal equilibrium distributions which include the Bose–Einstein distribution, the Fermi–Dirac distribution and the Maxwell–Boltzmann distribution.

Read more about Planck's Law:  Introduction, Different Forms, Derivation

Famous quotes containing the word law:

    These, having not the law, are a law unto themselves.
    —Bible: New Testament St. Paul, in Romans, 2:14.