Related Theoretical Research
The problem of determining whether a graph is planar can be solved in linear time with a simple algorithm, and any such graph is guaranteed to have a straight-line embedding by Fáry's theorem, that can also be found from the planar embedding in linear time. Therefore, any puzzle could be solved in linear time by a computer. However, these puzzles are not as straightforward for human players to solve.
In the field of computational geometry, the process of moving a subset of the vertices in a graph embedding to eliminate edge crossings has been studied by Pach and Tardos (2002), and others, inspired by the planarity puzzle. The results of these researchers shows that (in theory, assuming that the field of play is the infinite plane rather than a bounded rectangle) it is always possible to solve the puzzle while leaving of the input vertices fixed in place at their original positions, for a constant that has not been determined precisely but lies between 1/4 and 1/2. When the planar graph to be untangled is a cycle graph, a larger number of vertices may be fixed in place. However, determining the largest number of vertices that may be left in place for a particular input puzzle (or equivalently, the smallest number of moves needed to solve the puzzle) is NP-complete.
Verbitsky (2008) has shown that the randomized circular layout used for the initial state of Planarity is nearly the worst possible in terms of its number of crossings: regardless of what planar graph is to be tangled, the expected value of the number of crossings for this layout is within a factor of three of the largest number of crossings among all layouts.
Read more about this topic: Planarity
Famous quotes containing the words related, theoretical and/or research:
“Women stand related to beautiful nature around us, and the enamoured youth mixes their form with moon and stars, with woods and waters, and the pomp of summer. They heal us of awkwardness by their words and looks. We observe their intellectual influence on the most serious student. They refine and clear his mind: teach him to put a pleasing method into what is dry and difficult.”
—Ralph Waldo Emerson (18031882)
“There are theoretical reformers at all times, and all the world over, living on anticipation.”
—Henry David Thoreau (18171862)
“I did my research and decided I just had to live it.”
—Karina OMalley, U.S. sociologist and educator. As quoted in the Chronicle of Higher Education, p. A5 (September 16, 1992)