Planar Ternary Ring - Definition

Definition

A planar ternary ring is a structure where is a nonempty set, containing distinct elements called 0 and 1, and satisfies these five axioms:

  1. ;
  2. ;
  3. , there is a unique such that : ;
  4. , there is a unique, such that ; and
  5. , the equations have a unique solution .

When is finite, the third and fifth axioms are equivalent in the presence of the fourth. No other pair (0', 1') in can be found such that still satisfies the first two axioms.

Read more about this topic:  Planar Ternary Ring

Famous quotes containing the word definition:

    ... we all know the wag’s definition of a philanthropist: a man whose charity increases directly as the square of the distance.
    George Eliot [Mary Ann (or Marian)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    No man, not even a doctor, ever gives any other definition of what a nurse should be than this—”devoted and obedient.” This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.
    Florence Nightingale (1820–1910)