Pion - Theoretical Overview

Theoretical Overview

The pion can be thought of as one of the particles that mediate the interaction between a pair of nucleons. This interaction is attractive: it pulls the nucleons together. Written in a non-relativistic form, it is called the Yukawa potential. The pion, being spinless, has kinematics described by the Klein–Gordon equation. In the terms of quantum field theory, the effective field theory Lagrangian describing the pion-nucleon interaction is called the Yukawa interaction.

The nearly identical masses of π± and π0 imply that there must be a symmetry at play; this symmetry is called the SU(2) flavour symmetry or isospin. The reason that there are three pions, π+, π− and π0, is that these are understood to belong to the triplet representation or the adjoint representation 3 of SU(2). By contrast, the up and down quarks transform according to the fundamental representation 2 of SU(2), whereas the anti-quarks transform according to the conjugate representation 2*.

With the addition of the strange quark, one can say that the pions participate in an SU(3) flavour symmetry, belonging to the adjoint representation 8 of SU(3). The other members of this octet are the four kaons and the eta meson.

Pions are pseudoscalars under a parity transformation. Pion currents thus couple to the axial vector current and pions participate in the chiral anomaly.

Read more about this topic:  Pion

Famous quotes containing the word theoretical:

    The hypothesis I wish to advance is that ... the language of morality is in ... grave disorder.... What we possess, if this is true, are the fragments of a conceptual scheme, parts of which now lack those contexts from which their significance derived. We possess indeed simulacra of morality, we continue to use many of the key expressions. But we have—very largely if not entirely—lost our comprehension, both theoretical and practical, of morality.
    Alasdair Chalmers MacIntyre (b. 1929)