Theory
The piling-up lemma allows the cryptanalyst to determine the probability that the equality:
holds, where the X 's are binary variables (that is, bits: either 0 or 1).
Let P(A) denote "the probability that A is true". If it equals one, A is certain to happen, and if it equals zero, A cannot happen. First of all, we consider the piling-up lemma for two binary variables, where and .
Now, we consider:
Due to the properties of the xor operation, this is equivalent to
X1 = X2 = 0 and X1 = X2 = 1 are mutually exclusive events, so we can say
Now, we must make the central assumption of the piling-up lemma: the binary variables we are dealing with are independent; that is, the state of one has no effect on the state of any of the others. Thus we can expand the probability function as follows:
Now we express the probabilities p1 and p2 as ½ + ε1 and ½ + ε2, where the ε's are the probability biases — the amount the probability deviates from ½.
Thus the probability bias ε1,2 for the XOR sum above is 2ε1ε2.
This formula can be extended to more X 's as follows:
Note that if any of the ε's is zero; that is, one of the binary variables is unbiased, the entire probability function will be unbiased — equal to ½.
A related slightly different definition of the bias is in fact minus two times the previous value. The advantage is that now with
we have
adding random variables amounts to multiplying their (2nd definition) biases.
Read more about this topic: Piling-up Lemma
Famous quotes containing the word theory:
“The great tragedy of sciencethe slaying of a beautiful theory by an ugly fact.”
—Thomas Henry Huxley (18251895)
“Many people have an oversimplified picture of bonding that could be called the epoxy theory of relationships...if you dont get properly glued to your babies at exactly the right time, which only occurs very soon after birth, then you will have missed your chance.”
—Pamela Patrick Novotny (20th century)
“Every theory is a self-fulfilling prophecy that orders experience into the framework it provides.”
—Ruth Hubbard (b. 1924)