Piling-up Lemma - Theory

Theory

The piling-up lemma allows the cryptanalyst to determine the probability that the equality:

holds, where the X 's are binary variables (that is, bits: either 0 or 1).

Let P(A) denote "the probability that A is true". If it equals one, A is certain to happen, and if it equals zero, A cannot happen. First of all, we consider the piling-up lemma for two binary variables, where and .

Now, we consider:

Due to the properties of the xor operation, this is equivalent to

X1 = X2 = 0 and X1 = X2 = 1 are mutually exclusive events, so we can say

Now, we must make the central assumption of the piling-up lemma: the binary variables we are dealing with are independent; that is, the state of one has no effect on the state of any of the others. Thus we can expand the probability function as follows:

Now we express the probabilities p1 and p2 as ½ + ε1 and ½ + ε2, where the ε's are the probability biases — the amount the probability deviates from ½.

Thus the probability bias ε1,2 for the XOR sum above is 2ε1ε2.

This formula can be extended to more X 's as follows:

Note that if any of the ε's is zero; that is, one of the binary variables is unbiased, the entire probability function will be unbiased — equal to ½.

A related slightly different definition of the bias is in fact minus two times the previous value. The advantage is that now with

we have

adding random variables amounts to multiplying their (2nd definition) biases.

Read more about this topic:  Piling-up Lemma

Famous quotes containing the word theory:

    A theory if you hold it hard enough
    And long enough gets rated as a creed....
    Robert Frost (1874–1963)

    We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fall—which latter, it would seem, is now near, among all people.
    Thomas Carlyle (1795–1881)

    It makes no sense to say what the objects of a theory are,
    beyond saying how to interpret or reinterpret that theory in another.
    Willard Van Orman Quine (b. 1908)