Phonon - Acoustic and Optical Phonons

Acoustic and Optical Phonons

Solids with more than one type of atom – either with different masses or bonding strengths – in the smallest unit cell, exhibit two types of phonons: acoustic phonons and optical phonons.

Acoustic phonons are coherent movements of atoms of the lattice out of their equilibrium positions. The displacement as a function of position can be given by a cos(wx). If the displacement is in the direction of propagation, then in some areas the atoms will be closer, in others further apart, as in a sound wave in air (hence the name acoustic). Displacement perpendicular to the propagation direction is comparable to waves in water. If the wavelength of acoustic phonons goes to infinity, this corresponds to a simple displacement of the whole crystal, and this costs zero energy. Acoustic phonons exhibit a linear relationship between frequency and phonon wavevector for long wavelengths. The frequencies of acoustic phonons tend to zero with longer wavelength. Longitudinal and transverse acoustic phonons are often abbreviated as LA and TA phonons, respectively.

Optical phonons are out of phase movement of the atoms in the lattice, one atom moving to the left, and its neighbour to the right. This occurs if the lattice is made of atoms of different charge or mass. They are called optical because in ionic crystals, such as sodium chloride, they are excited by infrared radiation. The electric field of the light will move every positive sodium ion in the direction of the field, and every negative chloride ion in the other direction, sending the crystal vibrating. Optical phonons have a non-zero frequency at the Brillouin zone center and show no dispersion near that long wavelength limit. This is because they correspond to a mode of vibration where positive and negative ions at adjacent lattice sites swing against each other, creating a time-varying electrical dipole moment. Optical phonons that interact in this way with light are called infrared active. Optical phonons that are Raman active can also interact indirectly with light, through Raman scattering. Optical phonons are often abbreviated as LO and TO phonons, for the longitudinal and transverse modes respectively.

When measuring optical phonon energy by experiment, optical phonon frequencies, are often given in units of cm−1, which are the same units as the wavevector. This value corresponds to the inverse of the wavelength of a photon with the same energy as the measured phonon. The cm−1 is a unit of energy used frequently in the dispersion relations of both acoustic and optical phonons, see units of energy for more details and uses.

Read more about this topic:  Phonon

Famous quotes containing the word optical:

    There is an optical illusion about every person we meet.
    Ralph Waldo Emerson (1803–1882)