Phenology - Airborne Sensors

Airborne Sensors

Recent technological advances in studying the earth from space have resulted in a new field of phenological research that is concerned with observing the phenology of whole ecosystems and stands of vegetation on a global scale using proxy approaches. These methods complement the traditional phenological methods which recorded the first occurrences of individual species and phenophases.

The most successful of these approaches is based on tracking the temporal change of a Vegetation Index (like Normalized Difference Vegetation Index(NDVI)). NDVI makes use of the vegetation's typical low reflection in the red (red energy is mostly absorbed by growing plants for Photosynthesis) and strong reflection in the Near Infrared (Infrared energy is mostly reflected by plants due to their cellular structure). Due to its robustness and simplicity, NDVI has become one of the most popular remote sensing based products. Typically, a vegetation index is constructed in such a way that the attenuated reflected sunlight energy (1% to 30% of incident sunlight) is amplified by ratio-ing red and NIR following this equation:

The evolution of the vegetation index through time, depicted by the graph above, exhibits a strong correlation with the typical green vegetation growth stages (emergence, vigor/growth, maturity, and harvest/senescence). These temporal curves are analyzed to extract useful parameters about the vegetation growing season (start of season, end of season, length of growing season, etc.). Other growing season parameters could potentially be extracted, and global maps of any of these growing season parameters could then be constructed and used in all sorts of climatic change studies.

A noteworthy example of the use of remote sensing based phenology is the work of Ranga Myneni from Boston University. This work showed an apparent increase in vegetation productivity that most likely resulted from the increase in temperature and lengthening of the growing season in the boreal forest. Another example based on the MODIS enhanced vegetation index (EVI) reported by Alfredo Huete at the University of Arizona and colleagues showed that the Amazon Rainforest, as opposed to the long held view of a monotonous growing season or growth only during the wet rainy season, does in fact exhibit growth spurts during the dry season.,.

However, these phenological parameters are only an approximation of the true biological growth stages. This is mainly due to the limitation of current space based remote sensing, especially the spatial resolution, and the nature of vegetation index. A pixel in an image does not contain a pure target (like a tree, a shrub, etc.) but contains a mixture of whatever intersected the sensor's field of view.

Read more about this topic:  Phenology