Phase Plane - Example of A Linear System

Example of A Linear System

A two-dimensional system of linear differential equations can be written in the form:

 \begin{align}
\frac{dx}{dt} & = Ax + By \\
\frac{dy}{dt} & = Cx + Dy
\end{align}

which can be organized into a matrix equation:

 \begin{align}
& \frac{d}{dt} \begin{pmatrix}
x \\
y \\
\end{pmatrix} = \begin{pmatrix}
A & B \\
C & D \\
\end{pmatrix}\begin{pmatrix}
x \\
y \\
\end{pmatrix} \\
& \frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}.
\end{align}

where A is the 2 × 2 coefficient matrix above, and x = (x, y) is a coordinate vector of two independent variables.

Such systems may be solved analytically, for this case by integrating:

although the solutions are implicit functions in x and y, and are difficult to interpret.

Read more about this topic:  Phase Plane

Famous quotes containing the word system:

    As long as learning is connected with earning, as long as certain jobs can only be reached through exams, so long must we take this examination system seriously. If another ladder to employment was contrived, much so-called education would disappear, and no one would be a penny the stupider.
    —E.M. (Edward Morgan)