Phase-type Distribution

A phase-type distribution is a probability distribution that results from a system of one or more inter-related Poisson processes occurring in sequence, or phases. The sequence in which each of the phases occur may itself be a stochastic process. The distribution can be represented by a random variable describing the time until absorption of a Markov process with one absorbing state. Each of the states of the Markov process represents one of the phases.

It has a discrete time equivalent the discrete phase-type distribution.

The set of phase-type distributions is dense in the field of all positive-valued distributions, that is, it can be used to approximate any positive-valued distribution.

Read more about Phase-type Distribution:  Definition, Characterization, Special Cases, Examples, Generating Samples From Phase-type Distributed Random Variables, Approximating Other Distributions, Fitting A Phase Type Distribution To Data, See Also

Famous quotes containing the word distribution:

    Classical and romantic: private language of a family quarrel, a dead dispute over the distribution of emphasis between man and nature.
    Cyril Connolly (1903–1974)