Peter Lu - Other Contributions

Other Contributions

Lu's interests in geology-related phenemena also include paleontology, which lead to collaboration with his college and grad-school roommate Motohiro Yogo and Prof. Charles Marshall. Leveraging vector autoregression analysis upon an established marine fossil record, Lu, Yogo and Marshall found that a "speed limit," which was previously thought to restrict the reemergence of biodiversity following a mass extinction, may be an artifact of the incompleteness of the fossil record. According to paleontologist Douglas Erwin of the National Museum of Natural History in Washington, D.C., "This is the battle line for the next decade in paleontology." Lu's research in the group of Prof. David A. Weitz focused on the behavior of attractive colloidal particles in the laboratory and in the microgravity environment of the International Space Station. In 2008, Lu, Weitz and collaborators in Rome combined experiment and computer simulations to demonstrate that the onset of colloidal gelation is triggered by a form of phase separation known as spinodal decomposition, resolving a long-standing debate within the soft condensed-matter physics community on the origins of this mechanism. Lu's colloid work has also led to the development of new techniques for observing real-time, three-dimensional behavior of colloidal particles, and freely-moving biological cells, with active target-locking in real-time confocal microscopy. Lu also wrote the opening chapter, on confocal microscopy and nanotechnology, of the Handbook of Microscopy for Nanotechnology, edited by Nan Yao.

Read more about this topic:  Peter Lu