Peripheral Membrane Protein - Membrane Binding Mechanisms

Membrane Binding Mechanisms

The association of a protein with a lipid bilayer may involve significant changes within tertiary structure of a protein. These may include the folding of regions of protein structure that were previously unfolded or a re-arrangement in the folding or a refolding of the membrane-associated part of the proteins . It also may involve the formation or dissociation of protein quaternary structures or oligomeric complexes, and specific binding of ions, ligands, or regulatory lipids.

Typical amphitropic proteins must interact strongly with the lipid bilayer in order to perform their biological functions. These include the enzymatic processing of lipids and other hydrophobic substances, membrane anchoring, and the binding and transfer of small nonpolar compounds between different cellular membranes. These proteins may be anchored to the bilayer as a result of hydrophobic interactions between the bilayer and exposed nonpolar residues at the surface of a protein, by specific non-covalent binding interactions with regulatory lipids, or through their attachment to covalently bound lipid anchors.

It has been shown that the membrane binding affinities of many peripheral proteins depend on the specific lipid composition of the membrane with which they are associated.

Read more about this topic:  Peripheral Membrane Protein

Famous quotes containing the word binding:

    [Government’s] true strength consists in leaving individuals and states as much as possible to themselves—in making itself felt, not in its power, but in its beneficence, not in its control, but in its protection, not in binding the states more closely to the center, but leaving each to move unobstructed in its proper orbit.
    Andrew Jackson (1767–1845)