Relation To Quadratic Irrationals
A quadratic irrational number is an irrational real root of the quadratic equation
where the coefficients a, b, and c are integers, and the discriminant, b2 − 4ac, is greater than zero. By the quadratic formula every quadratic irrational can be written in the form
where P, D, and Q are integers, D > 0 is not a perfect square, and Q divides the quantity P2 − D.
By considering the complete quotients of periodic continued fractions, Euler was able to prove that if x is a regular periodic continued fraction, then x is a quadratic irrational number. The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy.
Lagrange proved the converse of Euler's theorem: if x is a quadratic irrational, then the regular continued fraction expansion of x is periodic. Given a quadratic irrational x one can construct m different quadratic equations, each with the same discriminant, that relate the successive complete quotients of the regular continued fraction expansion of x to one another. Since there are only finitely many of these equations (the coefficients are bounded), the complete quotients (and also the partial denominators) in the regular continued fraction that represents x must eventually repeat.
Read more about this topic: Periodic Continued Fraction
Famous quotes containing the words relation to and/or relation:
“You see, I am alive, I am alive
I stand in good relation to the earth
I stand in good relation to the gods
I stand in good relation to all that is beautiful
I stand in good relation to the daughter of Tsen-tainte
You see, I am alive, I am alive”
—N. Scott Momaday (b. 1934)
“Parents ought, through their own behavior and the values by which they live, to provide direction for their children. But they need to rid themselves of the idea that there are surefire methods which, when well applied, will produce certain predictable results. Whatever we do with and for our children ought to flow from our understanding of and our feelings for the particular situation and the relation we wish to exist between us and our child.”
—Bruno Bettelheim (20th century)