Perfect Set Property

In descriptive set theory, a subset of a Polish space has the perfect set property if it is either countable or has a nonempty perfect subset (Kechris 1995, p. 150). Note that having the perfect set property is not the same as being a perfect set.

As nonempty perfect sets in a Polish space always have the cardinality of the continuum, a set with the perfect set property cannot be a counterexample to the continuum hypothesis, stated in the form that every uncountable set of reals has the cardinality of the continuum.

The Cantor–Bendixson theorem states that closed sets of a Polish space X have the perfect set property in a particularly strong form; any closed set C may be written uniquely as the disjoint union of a perfect set P and a countable set S. Thus it follows that every closed subset of a Polish space has the perfect set property. In particular, every uncountable Polish space has the perfect set property, and can be written as the disjoint union of a perfect set and a countable open set.

It follows from the axiom of choice that there are sets of reals that do not have the perfect set property. Every analytic set has the perfect set property. It follows from sufficient large cardinals that every projective set has the perfect set property.

Famous quotes containing the words perfect, set and/or property:

    This is the end, the redemption from Wilderness, way for the Wonderer, House sought for All, black handkerchief washed clean by weeping—page beyond Psalm—Last change of mine and Naomi—to God’s perfect Darkness— Death, stay thy phantoms!
    Allen Ginsberg (b. 1926)

    What these perplexities of my uncle Toby were,—’tis impossible for you to guess;Mif you could,—I should blush ... as an author; inasmuch as I set no small store by myself upon this very account, that my reader has never yet been able to guess at any thing. And ... if I thought you was able to form the least ... conjecture to yourself, of what was to come in the next page,—I would tear it out of my book.
    Laurence Sterne (1713–1768)

    All over this land women have no political existence. Laws pass over our heads that we can not unmake. Our property is taken from us without our consent. The babes we bear in anguish and carry in our arms are not ours.
    Lucy Stone (1818–1893)