Quasi-perfect Group
Especially in the field of algebraic K-theory, a group is said to be quasi-perfect if its commutator subgroup is perfect; in symbols, a quasi-perfect group is one such that G(1) = G(2) (the commutator of the commutator subgroup is the commutator subgroup), while a perfect group is one such that G(1) = G (the commutator subgroup is the whole group). See (Karoubi 1973, pp. 301–411) and (Inassaridze 1995, p. 76).
Read more about this topic: Perfect Group
Famous quotes containing the word group:
“The boys think they can all be athletes, and the girls think they can all be singers. Thats the way to fame and success. ...as a group blacks must give up their illusions.”
—Kristin Hunter (b. 1931)