Peirce's Law - Using Peirce's Law With The Deduction Theorem

Using Peirce's Law With The Deduction Theorem

Peirce's law allows one to enhance the technique of using the deduction theorem to prove theorems. Suppose one is given a set of premises Γ and one wants to deduce a proposition Z from them. With Peirce's law, one can add (at no cost) additional premises of the form ZP to Γ. For example, suppose we are given PZ and (PQ)→Z and we wish to deduce Z so that we can use the deduction theorem to conclude that (PZ)→(((PQ)→Z)→Z) is a theorem. Then we can add another premise ZQ. From that and PZ, we get PQ. Then we apply modus ponens with (PQ)→Z as the major premise to get Z. Applying the deduction theorem, we get that (ZQ)→Z follows from the original premises. Then we use Peirce's law in the form ((ZQ)→Z)→Z and modus ponens to derive Z from the original premises. Then we can finish off proving the theorem as we originally intended.

    • PZ 1. hypothesis
      • (PQ)→Z 2. hypothesis
        • ZQ 3. hypothesis
          • P 4. hypothesis
          • Z 5. modus ponens using steps 4 and 1
          • Q 6. modus ponens using steps 5 and 3
        • PQ 7. deduction from 4 to 6
        • Z 8. modus ponens using steps 7 and 2
      • (ZQ)→Z 9. deduction from 3 to 8
      • ((ZQ)→Z)→Z 10. Peirce's law
      • Z 11. modus ponens using steps 9 and 10
    • ((PQ)→Z)→Z 12. deduction from 2 to 11
  • (PZ)→((PQ)→Z)→Z) 13. deduction from 1 to 12 QED

Read more about this topic:  Peirce's Law

Famous quotes containing the words peirce, law and/or theorem:

    Three elements go to make up an idea. The first is its intrinsic quality as a feeling. The second is the energy with which it affects other ideas, an energy which is infinite in the here-and-nowness of immediate sensation, finite and relative in the recency of the past. The third element is the tendency of an idea to bring along other ideas with it.
    —Charles Sanders Peirce (1839–1914)

    Our law very often reminds one of those outskirts of cities where you cannot for a long time tell how the streets come to wind about in so capricious and serpent-like a manner. At last it strikes you that they grew up, house by house, on the devious tracks of the old green lanes; and if you follow on to the existing fields, you may often find the change half complete.
    Walter Bagehot (1826–1877)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)