Pauli Exclusion Principle - History

History

In the early 20th century it became evident that atoms and molecules with even numbers of electrons are more chemically stable than those with odd numbers of electrons. In the famous 1916 article The Atom and the Molecule by Gilbert N. Lewis, for example, the third of his six postulates of chemical behavior states that the atom tends to hold an even number of electrons in the shell and especially to hold eight electrons which are normally arranged symmetrically at the eight corners of a cube (see: cubical atom). In 1919 chemist Irving Langmuir suggested that the periodic table could be explained if the electrons in an atom were connected or clustered in some manner. Groups of electrons were thought to occupy a set of electron shells about the nucleus. In 1922, Niels Bohr updated his model of the atom by assuming that certain numbers of electrons (for example 2, 8 and 18) corresponded to stable "closed shells".

Pauli looked for an explanation for these numbers, which were at first only empirical. At the same time he was trying to explain experimental results in the Zeeman effect in atomic spectroscopy and in ferromagnetism. He found an essential clue in a 1924 paper by Edmund C. Stoner which pointed out that for a given value of the principal quantum number (n), the number of energy levels of a single electron in the alkali metal spectra in an external magnetic field, where all degenerate energy levels are separated, is equal to the number of electrons in the closed shell of the noble gases for the same value of n. This led Pauli to realize that the complicated numbers of electrons in closed shells can be reduced to the simple rule of one electron per state, if the electron states are defined using four quantum numbers. For this purpose he introduced a new two-valued quantum number, identified by Samuel Goudsmit and George Uhlenbeck as electron spin.

Read more about this topic:  Pauli Exclusion Principle

Famous quotes containing the word history:

    In the history of the United States, there is no continuity at all. You can cut through it anywhere and nothing on this side of the cut has anything to do with anything on the other side.
    Henry Brooks Adams (1838–1918)

    History does nothing; it does not possess immense riches, it does not fight battles. It is men, real, living, who do all this.... It is not “history” which uses men as a means of achieving—as if it were an individual person—its own ends. History is nothing but the activity of men in pursuit of their ends.
    Karl Marx (1818–1883)

    When the history of this period is written, [William Jennings] Bryan will stand out as one of the most remarkable men of his generation and one of the biggest political men of our country.
    William Howard Taft (1857–1930)