Related Results
This theorem is a generalization of Pappus's (hexagon) theorem – Pappus's theorem is the special case of a degenerate conic of two lines. Pascal's theorem is the polar reciprocal and projective dual of Brianchon's theorem. It was discovered by Blaise Pascal in 1639 when he was 16 years old and published the following year as a broadside titled "Essay povr les coniqves. Par B. P.". Pascal deduced over four hundred corollaries from this theorem.
A degenerate case of Pascal's Theorem (four points) is interesting; given points ABCD on a conic Γ, the intersection of alternate sides, AB ∩ CD, BC ∩ DA, together with the intersection of tangents at opposite vertices (A, C) and (B, D) are collinear in four points; the tangents being degenerate 'sides', taken at two possible positions on the 'hexagon' and the corresponding Pascal Line sharing either degenerate intersection. This can be proven independently using a property of pole-polar. If the conic is a circle, then another degenerate case tells us that for a triangle, the three points that appear as the intersection of a side line with the corresponding side line of the Gergonne triangle, are collinear.
Six is the minimum number of points on a conic about which special statements can be made, as five points determine a conic.
The converse is the Braikenridge–Maclaurin theorem, named for 18th century British mathematicians William Braikenridge and Colin Maclaurin (Mills 1984), which states that if the 3 intersection points of the lines through three sides of a hexagon lie on a line, then the 6 vertices of the hexagon lie on a conic; the conic may be degenerate, as in Pappus's theorem. The Braikenridge–Maclaurin theorem may be applied in the Braikenridge–Maclaurin construction, which is a synthetic construction of the conic defined by five points, by varying the sixth point.
The theorem was generalized by Möbius in 1847, as follows: suppose a polygon with 4n + 2 sides is inscribed in a conic section, and opposite pairs of sides are extended until they meet in 2n + 1 points. Then if 2n of those points lie on a common line, the last point will be on that line, too.
Read more about this topic: Pascal's Theorem
Famous quotes containing the words related and/or results:
“No being exists or can exist which is not related to space in some way. God is everywhere, created minds are somewhere, and body is in the space that it occupies; and whatever is neither everywhere nor anywhere does not exist. And hence it follows that space is an effect arising from the first existence of being, because when any being is postulated, space is postulated.”
—Isaac Newton (16421727)
“How can you tell if you discipline effectively? Ask yourself if your disciplinary methods generally produce lasting results in a manner you find acceptable. Whether your philosophy is democratic or autocratic, whatever techniques you usereasoning, a star chart, time-outs, or spankingif it doesnt work, its not effective.”
—Stanley Turecki (20th century)