Pascal's Theorem - Proof Using Cubic Curves

Proof Using Cubic Curves

Pascal's theorem has a short proof using the Cayley–Bacharach theorem that given any 8 points in general position, there is a unique ninth point such that all cubics through the first 8 also pass through the ninth point. In particular if 2 general cubics intersect in 8 points then any other cubic through the same 8 points meets the ninth point of intersection of the first two cubics. Pascal's theorem follows by taking the 8 points as the 6 points on the hexagon and two of the points (say, M and N in the figure) on the would-be Pascal line, and the ninth point as the third point (P in the figure). The first two cubics are two sets of 3 lines through the 6 points on the hexagon (for instance, the set AB, CD, EF, and the set BC, DE, FA), and the third cubic is the union of the conic and the line MN. Here the "ninth intersection" P cannot lie on the conic by genericity, and hence it lies on MN.

The Cayley–Bacharach theorem is also used to prove that the group operation on cubic elliptic curves is associative. The same group operation can be applied on a cone if we choose a point E on the cone and a line MP in the plane. The sum of A and B is obtained by first finding the intersection point of line AB with MP, which is M. Next A and B add up to the second intersection point of the cone with line EM, which is D. Thus if Q is the second intersection point of the cone with line EN, then

Thus the group operation is associative. On the other hand, Pascal's theorem follows from the above associativity formula, and thus from the associativity of the group operation of elliptic curves by way of continuity.

Read more about this topic:  Pascal's Theorem

Famous quotes containing the words proof, cubic and/or curves:

    Sculpture and painting are very justly called liberal arts; a lively and strong imagination, together with a just observation, being absolutely necessary to excel in either; which, in my opinion, is by no means the case of music, though called a liberal art, and now in Italy placed even above the other two—a proof of the decline of that country.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    One of the great natural phenomena is the way in which a tube of toothpaste suddenly empties itself when it hears that you are planning a trip, so that when you come to pack it is just a twisted shell of its former self, with not even a cubic millimeter left to be squeezed out.
    Robert Benchley (1889–1945)

    At the end of every diet, the path curves back toward the trough.
    Mason Cooley (b. 1927)