Partition Function (quantum Field Theory)

Partition Function (quantum Field Theory)

In quantum field theory, we have a generating functional, Z of correlation functions and this value, called the partition function is usually expressed by something like the following functional integral:

where S is the action functional.

The partition function in quantum field theory is a special case of the mathematical partition function, and is related to the statistical partition function in statistical mechanics. The primary difference is that the countable collection of random variables seen in the definition of such simpler partition functions has been replaced by an uncountable set, thus necessitating the use of functional integrals over a field .

Read more about Partition Function (quantum Field Theory):  Uses, Complex-valued Action, Books

Famous quotes containing the words function and/or field:

    For me being a poet is a job rather than an activity. I feel I have a function in society, neither more nor less meaningful than any other simple job. I feel it is part of my work to make poetry more accessible to people who have had their rights withdrawn from them.
    Jeni Couzyn (b. 1942)

    Frankly, I’d like to see the government get out of war altogether and leave the whole field to private industry.
    Joseph Heller (b. 1923)