Particle Statistics - Quantum Statistics

Quantum Statistics

The fundamental feature of quantum mechanics that distinguishes it from classical mechanics is that particles of a particular type are indistinguishable from one another. This means that in an assembly consisting of similar particles, interchanging any two particles does not lead to a new configuration of the system (in the language of quantum mechanics: the wave function of the system is invariant with respect to the interchange of the constituent particles). In case of a system consisting of particles belonging to different nature (for example electrons and protons), the wave function of the system is invariant separately for the assembly of the two particles.

While this difference between classical and quantum description of systems is fundamental to all of quantum statistics, it is further divided into the following two classes on the basis of symmetry of the system.

Read more about this topic:  Particle Statistics

Famous quotes containing the words quantum and/or statistics:

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    July 4. Statistics show that we lose more fools on this day than in all the other days of the year put together. This proves, by the number left in stock, that one Fourth of July per year is now inadequate, the country has grown so.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)