Solutions For Potentials of Interest
Five special cases arise, of special importance:
- V(r) = 0, or solving the vacuum in the basis of spherical harmonics, which serves as the basis for other cases.
- (finite) for and 0 elsewhere, or a particle in the spherical equivalent of the square well, useful to describe scattering and bound states in a nucleus or quantum dot.
- As the previous case, but with an infinitely high jump in the potential on the surface of the sphere.
- V(r) ~ r2 for the three-dimensional isotropic harmonic oscillator.
- V(r) ~ 1/r to describe bound states of hydrogen-like atoms.
We outline the solutions in these cases, which should be compared to their counterparts in cartesian coordinates, cf. particle in a box. This article relies heavily on Bessel functions and Laguerre polynomials.
Read more about this topic: Particle In A Spherically Symmetric Potential
Famous quotes containing the words solutions and/or interest:
“Every man is in a state of conflict, owing to his attempt to reconcile himself and his relationship with life to his conception of harmony. This conflict makes his soul a battlefield, where the forces that wish this reconciliation fight those that do not and reject the alternative solutions they offer. Works of art are attempts to fight out this conflict in the imaginative world.”
—Rebecca West (18921983)
“I should consider it a greater success to interest one wise and earnest soul, than a million unwise and frivolous.”
—Henry David Thoreau (18171862)