Parthenogenesis - Natural Occurrence - Insects

Insects

Parthenogenesis in insects can cover a wide range of mechanisms. The offspring produced by parthenogenesis may be of both sexes, only female (thelytoky, e.g. aphids) or only male (arrhenotoky, e.g. most hymenopterans). Both true parthenogenesis and pseudogamy (gynogenesis or sperm-dependent parthenogenesis) are known to occur. The egg cells, depending on the species may be produced without meiosis (apomictically) or by one of the several automictic mechanisms.

A related phenomenon, polyembryony is a process that produces multiple clonal offspring from a single egg cell. This is known in some hymenopteran parasitoids and in Strepsiptera.

In automictic species the offspring can be haploid or diploid. Diploids are produced by doubling or fusion of gametes after meiosis. Fusion is seen in the Phasmatodea, Hemiptera (Aleurodids and Coccidae), Diptera, and some Hymenoptera.

In addition to these forms is hermaphroditism, where both the eggs and sperm are produced by the same individual, but is not a type of parthenogenesis. This is seen in three species of Icerya scale insects.

Parasitic bacteria like Wolbachia have been noted to induce automictic thelytoky in many insect species with haplodiploid systems. They also cause gamete duplication in unfertilized eggs causing them to develop into female offspring.

Among the hymenopterans (ants, bees and wasps), haploid males are produced from unfertilized eggs. Usually eggs are laid only by the queen, but the unmated workers may also lay haploid, male eggs either regularly (e.g. stingless bees) or under special circumstances. An example of non-viable parthenogenesis is common among domesticated honey bees. The queen bee is the only fertile female in the hive; if she dies without the possibility for a viable replacement queen, it is not uncommon for the worker bees to lay eggs. Worker bees are unable to mate, and the unfertilized eggs produce only drones (males), which can mate only with a queen. Thus, in a relatively short period, all the worker bees die off, and the new drones follow.

A few ants and bees are capable of producing diploid female offspring parthenogenetically. These include a honey bee subspecies from South Africa, Apis mellifera capensis, where workers are capable of producing diploid eggs parthenogenetically, and replacing the queen if she dies; other examples include some species of small carpenter bee, (genus Ceratina). Many parasitic wasps are known to be parthenogenetic, sometimes due to infections by Wolbachia.

The workers in five ant species and the queens in some ants are known to reproduce by parthenogenesis. In Cataglyphis cursor, a European formicine ant, the queens and workers can produce new queens by parthenogenesis. The workers are produced sexually.

In Central and South American electric ants, Wasmannia auropunctata, queens produce more queens through ameiotic parthenogenesis. Sterile workers usually are produced from eggs fertilized by males. In some of the eggs fertilized by males, however, the fertilization can cause the female genetic material to be ablated from the zygote. In this way, males pass on only their genes to become fertile male offspring. This is the first recognized example of an animal species where both females and males can reproduce clonally resulting in a complete separation of male and female gene pools.

These ants get both the benefits of both asexual and sexual reproduction — the daughters who can reproduce (the queens) have all of the mother's genes, while the sterile workers whose physical strength and disease resistance are important are produced sexually.

Another example of insect parthenogenesis can be found in gall-forming aphids (e.g. Pemphigus betae), where females reproduce parthenogenetically during the gall-forming phase of their life cycle.

Read more about this topic:  Parthenogenesis, Natural Occurrence

Famous quotes containing the word insects:

    swerving
    perfectly,
    the fierce, brilliant faith
    that pierces the heart all summer
    and sips bitter insects steeped in nectar ...
    Denise Levertov (b. 1923)

    There are men from whom nature or some peculiar destiny has removed the cover beneath which we hide our own madness. They are like thin-skinned insects whose visible play of muscles seem to make them deformed, though in fact, everything soon turns to its normal shape again.
    —E.T.A.W. (Ernst Theodor Amadeus Wilhelm)

    Our treasure lies in the beehive of our knowledge. We are perpetually on the way thither, being by nature winged insects and honey gatherers of the mind.
    Friedrich Nietzsche (1844–1900)