P (complexity) - Relationships To Other Classes

Relationships To Other Classes

A generalization of P is NP, which is the class of decision problems decidable by a non-deterministic Turing machine that runs in polynomial time. Equivalently, it is the class of decision problems where each "yes" instance has a polynomial size certificate, and certificates can be checked by a polynomial time deterministic Turing machine. The class of problems for which this is true for the "no" instances is called co-NP. P is trivially a subset of NP and of co-NP; most experts believe it is a strict subset, although this (the PNP hypothesis) remains unproven. Another open problem is whether NP = co-NP (a negative answer would imply PNP).

P is also known to be at least as large as L, the class of problems decidable in a logarithmic amount of memory space. A decider using space cannot use more than time, because this is the total number of possible configurations; thus, L is a subset of P. Another important problem is whether L = P. We do know that P = AL, the set of problems solvable in logarithmic memory by alternating Turing machines. P is also known to be no larger than PSPACE, the class of problems decidable in polynomial space. Again, whether P = PSPACE is an open problem. To summarize:

Here, EXPTIME is the class of problems solvable in exponential time. Of all the classes shown above, only two strict containments are known:

  • P is strictly contained in EXPTIME. Consequently, all EXPTIME-hard problems lie outside P, and at least one of the containments to the right of P above is strict (in fact, it is widely believed that all three are strict).
  • L is strictly contained in PSPACE.

The most difficult problems in P are P-complete problems.

Another generalization of P is P/poly, or Nonuniform Polynomial-Time. If a problem is in P/poly, then it can be solved in deterministic polynomial time provided that an advice string is given that depends only on the length of the input. Unlike for NP, however, the polynomial-time machine doesn't need to detect fraudulent advice strings; it is not a verifier. P/poly is a large class containing nearly all practical problems, including all of BPP. If it contains NP, then the polynomial hierarchy collapses to the second level. On the other hand, it also contains some impractical problems, including some undecidable problems such as the unary version of any undecidable problem.

In 1999, Jin-Yi Cai and D. Sivakumar, building on work by Mitsunori Ogihara, showed that if there exists a sparse language which is P-complete, then L = P.

Read more about this topic:  P (complexity)

Famous quotes containing the word classes:

    By his very success in inventing labor-saving devices, modern man has manufactured an abyss of boredom that only the privileged classes in earlier civilizations have ever fathomed.
    Lewis Mumford (1895–1990)