Definition Using Interpolation
The Kubota–Leopoldt p-adic L-function Lp(s, χ) interpolates the Dirichlet L-function with the Euler factor at p removed. More precisely, Lp(s, χ) is the unique continuous function of the p-adic number s such that
for positive integers n divisible by p − 1. The right hand side is just the usual Dirichlet L-function, except that the Euler factor at p is removed, otherwise it would not be p-adically continuous. The continuity of the right hand side is closely related to the Kummer congruences.
When n is not divisible by p − 1 this does not usually hold; instead
for positive integers n. Here χ is twisted by a power of the Teichmuller character ω.
Read more about this topic: P-adic L-function
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)